Obstacle Avoidance Using An iPad and LIDAR

Shane Wighton, the designer behind the well-known basketball hoop that won’t let you miss, has created a system for obstacle detection that uses the new iPad’s built-in LIDAR scanner.

The LIDAR system works by taking regular readings of a room by sending out tiny pulses of light at targets and measuring the time it takes to return a reflection. In this way, a scan can be taken of an entire room to accurately determine the location of objects and obstructions.

Wighton used the technology to make an app which not only harnesses data from the LIDAR scans at regular intervals but visualizes the data as an augmented reality overlay color coded to show the relative distance of objects. When paired with a custom 3D-printed tactile interface that attaches to the back of the iPad, the data can be translated through a mechanism that depresses or exposes a set of pins as an indicator of obstacle presence. In a video posted to YouTube, Wighton discusses his design process including how he decided to use the iPad’s LIDAR system and how he built the tactile feedback mechanism which uses two stepper motors driven by a Teensy 3.6. He also discusses the parts of the project he feels could be improved as well as his hopes for future iterations, especially if LIDAR were to be released for the iPhone. You can view Wighton’s other projects on his website and his YouTube channel Stuff Made Here.


Binaural Beat Synthesizer

Instrument maker and artist Greg Francke recently shared a project on Hackaday that uses binaural recording in combination with the Teensy audio library to produce a six channel wave synthesizer capable of generating “complex aural soundscapes.”

Binaural recording is a process that makes use of two microphones strategically located to create a 3-D stereo experience for the listener that replicates the experience of being in a room with a live sound performance.

The project features a TFT display GUI showing options for sound manipulation that include modulation frequency, waveform, duty cycle, center frequency, beat frequency, beat waveform, and beat duty cycle.

In his project posting on Hackaday, Francke mentions that his original plan for the synth was to use analog potentiometers for control but found that noise levels were too high leading him to scrap this feature.

Francke’s blog includes many other projects which explore everything from J.G. Ballard-inspired robots to USB-powered “Tesla Stress Relief” devices.




F°LUEX: A Smart Thermometer

Few people are able to distinguish between a flu and a cold based on symptoms alone, but what if a device could do it for you? F°LUEX is an automated medical diagnostics device that uses the Teensy 3.2.

Designed by engineer and actual rocket scientist M. Bindhammer, F°LUEX is an automated medical diagnostics device that incorporates a medical-grade MLX90614 infrared thermometer to read human body temperature with an accuracy of ±0.2˚C. Following the reading, the patient is asked a series of questions displayed on an OLED screen about their symptoms. Based on their temperature reading and the patient’s responses which are input using the device’s controls, the thermometer is able to distinguish cold from flu within a certain probability based upon the same Bayesian statistic analysis process that is frequently used among modern medical practitioners. The device is powered by two 1.5 V AA alkaline batteries and all electronics including display, inputs (soft power switch and miniature joystick), and sensor are driven by a Teensy 3.2.

M. Bindhammer created the project to support his 8 year old daughter who frequently contracts the flu and whose pediatrician is often unavailable on the weekends when she usually becomes ill. In his design, he strove to use only a few easy-to-obtain components in combination with a 3D printed case so that others could replicate the project at home. The project is a winner of a 2020 Hackaday Prize and the full project description can be viewed on Hackaday.