
ARM® Debug Interface
Architecture Specification

ADIv5.0 to ADIv5.2
Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved.
ARM IHI 0031C (ID080813)

ARM Debug Interface Architecture Specification
ADIv5.0 to ADIv5.2

Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this book.

This book includes information originally published in the ARM® Debug Interface v5 Architecture Specification ADIv5.1
Supplement (DSA09-PRDC-008772).

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MER-CHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAG-ES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
else-where. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. No license is granted to you hereunder to use the trademarks of ARM Limited or its affiliates.

Figure 3-3 on page 3-72 reproduced with permission IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary Scan
Architecture Copyright © 2006, by IEEE. The IEEE disclaims any responsibility or liability resulting from the placement and use
in the described manner.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20350

Change History

Date Issue Confidentiality Change

8 February 2006 A Non-Confidential First issue, for ADIv5.

14 May 2012 B Confidential Beta Second issue, for ADIv5.0 to ADIv5.2.

08 August 2013 C Non-Confidential Final Third issue, for ADIv5.0 to ADIv5.2.
ii Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Confidentiality Status

This document is Non-Confidential. Any use by you is subject to the terms of the agreement between you and ARM or the terms
of the agreement between you and the party authorised by ARM to disclose this document to you.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. iii
ID080813 Non-Confidential

iv Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Contents
ARM Debug Interface Architecture Specification
ADIv5.0 to ADIv5.2

Preface
About this book .. x
Using this book ... xi
Conventions ... xii
Additional reading ... xiv
Feedback ... xv

Chapter 1 Introduction
1.1 About the ARM Debug Interface version 5 (ADIv5) ... 1-18
1.2 The function of the ARM Debug Interface .. 1-20
1.3 The subdivisions of an ARM Debug Interface v5 implementation 1-22
1.4 The external interface, the Debug Port (DP) .. 1-23
1.5 The resource interface, the Access Ports (APs) .. 1-24
1.6 Design choices and implementation examples .. 1-28

Chapter 2 The Debug Port (DP)
2.1 Common Debug Port features ... 2-34
2.2 DP architecture versions .. 2-40
2.3 DP register descriptions ... 2-45
2.4 System and debug power and debug reset control ... 2-62

Chapter 3 The JTAG Debug Port (JTAG-DP)
3.1 The Debug TAP State Machine introduction .. 3-70
3.2 The scan chain interface .. 3-71
3.3 IR scan chain and IR instructions .. 3-74
3.4 DR scan chain and DR registers .. 3-78
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. v
ID080813 Non-Confidential

Contents
Chapter 4 The Serial Wire Debug Port (SW-DP)
4.1 Introduction to the Serial Wire Debug Port ... 4-88
4.2 Introduction to the ARM Serial Wire Debug (SWD) protocol 4-89
4.3 Serial Wire Debug protocol operation .. 4-93
4.4 Serial Wire Debug interface ... 4-104

Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.1 Serial Wire/JTAG Debug Port (SWJ-DP) ... 5-108
5.2 SWD and JTAG select mechanism .. 5-110
5.3 Dormant operation .. 5-113
5.4 Restriction on switching .. 5-120

Chapter 6 The Access Port (AP)
6.1 Overview of Access Ports (APs) .. 6-122
6.2 Selecting and accessing an AP .. 6-123
6.3 The Programmers’ Model for Access Port (AP) registers 6-124

Chapter 7 The Memory Access Port (MEM-AP)
7.1 About the function of a Memory Access Port (MEM-AP) 7-128
7.2 MEM-AP functions .. 7-132
7.3 Implementing a MEM-AP ... 7-142
7.4 MEM-AP examples of pushed-verify and pushed-compare 7-144
7.5 MEM-AP register summary .. 7-146
7.6 MEM-AP register descriptions .. 7-147

Chapter 8 The JTAG Access Port (JTAG-AP)
8.1 Overview of the JTAG Access Port (JTAG-AP) ... 8-162
8.2 Operation of the JTAG-AP ... 8-166
8.3 The JTAG Engine Byte Command Protocol ... 8-169
8.4 JTAG-AP register summary ... 8-176
8.5 JTAG-AP register descriptions ... 8-177

Chapter 9 Component and Peripheral ID Registers
9.1 Component and Peripheral ID registers ... 9-186
9.2 The Component ID Registers ... 9-187
9.3 The Peripheral ID Registers ... 9-191

Chapter 10 ROM Tables
10.1 ROM Table overview .. 10-200
10.2 ROM Table entries ... 10-202
10.3 The MEMTYPE register ... 10-205
10.4 Component and Peripheral ID Registers .. 10-206
10.5 ROM Table hierarchies .. 10-207

Appendix A Standard Memory Access Port Definitions
A.1 Introduction .. A-212
A.2 AMBA AXI3 and AXI4 .. A-213
A.3 AMBA AXI4 with ACE-Lite ... A-215
A.4 AMBA AHB .. A-217
A.5 AMBA APB2 and APB3 ... A-218

Appendix B Cross-over with the ARM Architecture
B.1 Introduction .. B-220
B.2 ARMv6-M architecture ... B-221
B.3 ARMv7-M architecture profile .. B-222
B.4 ARMv7-A without Large Physical Address Extension and ARMv7-R architecture profiles

 B-223
vi Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Contents
B.5 ARMv7-A with Large Physical Address Extension and ARMv8-A architecture profiles .
B-224

B.6 Summary of the required ADIv5 implementations ... B-225

Appendix C Pseudocode Definition
C.1 About ARM pseudocode .. C-228
C.2 Data types .. C-229
C.3 Expressions ... C-233
C.4 Operators and built-in functions ... C-235
C.5 Statements and program structure .. C-240

Glossary
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. vii
ID080813 Non-Confidential

Contents
viii Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Preface

This preface introduces the ARM Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2. It contains the
following sections:
• About this book on page x.
• Using this book on page xi.
• Conventions on page xii.
• Additional reading on page xiv.
• Feedback on page xv.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ix
ID080813 Non-Confidential

 Preface
 About this book
About this book
This is the Architecture Specification for the ARM Debug Interface v5, ADIv5.0 to ADIv5.2 (ADIv5).

Intended audience

This specification is written for system designers and engineers who are specifying, designing or implementing a
debug interface to the ADIv5 architecture specification. This includes system designers and engineers who are
specifying, designing or implementing a System-on-Chip (SoC) that incorporates a debug interface that complies
with the ADIv5 specification.

This specification is also intended for engineers who are working with a debug interface that conforms to the ADIv5
specification. This includes designers and engineers who are:
• Specifying, designing or implementing hardware debuggers.
• Specifying, designing or writing debug software.

These engineers have no control over the design decisions made in the ADIv5 interface implementation to which
they are connecting, but must be able to identify the ADIv5 interface components present, and understand how they
operate.

This specification provides an architectural description of an ADIv5 interface. It does not describe how to
implement the interface.
x Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

 Preface
 Using this book
Using this book
This specification is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for a high-level view of the ARM Debug Interface (ADI). This chapter defines the
logical subdivisions of an ADI, and summarizes the design choices made when implementing an
ADI.

Chapter 2 The Debug Port (DP)

Read this chapter for a description of the features that must be implemented on the Debug Port (DP)
of an ADI.

Every ADI includes a single DP, either a JTAG Debug Port (JTAG-DP) or a Serial Wire Debug Port
(SW-DP).

Chapter 3 The JTAG Debug Port (JTAG-DP)

Read this chapter for a description of the JTAG Debug Port (JTAG-DP), and in particular, the Debug
Test Access Port State Machine (DBGTAPSM) and the scan chains that access the JTAG-DP.

Chapter 4 The Serial Wire Debug Port (SW-DP)

Read this chapter for a description of the Serial Wire Debug Port (SW-DP), and the Serial Wire
Debug protocol used for accesses to a SW-DP.

Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP)

Read this chapter for a description of multiple protocol interoperability as implemented in the Serial
Wire/JTAG Debug Port (SWJ-DP) CoreSight component.

Chapter 6 The Access Port (AP)

Read this chapter for a description of ADI Access Ports (APs), and details of the features that every
AP must implement.

Chapter 7 The Memory Access Port (MEM-AP)

Read this chapter for a description of the ADI Memory Access Port (MEM-AP).

Chapter 8 The JTAG Access Port (JTAG-AP)

Read this chapter for a description of the ADI JTAG Access Port (JTAG-AP).

Chapter 9 Component and Peripheral ID Registers

Read this chapter for a description of the Component and Peripheral ID Registers. These registers
are part of the register space of every debug component that complies with the ADIv5 specification.

Chapter 10 ROM Tables

Read this chapter for a description of ARM debug component ROM Tables. Any ADI can include
a ROM Table, and an ADI with more than one debug component must include at least one ROM
Table.

Appendix A Standard Memory Access Port Definitions

Read this appendix for information on implementing the Memory Access Port (MEM-AP).

Appendix B Cross-over with the ARM Architecture

Read this appendix for a description of the required or recommended options for the ARM Debug
Interface for ARMv6-M and all ARMv7 architecture profiles.

Appendix C Pseudocode Definition

Read this appendix for a description of the pseudocode used in this document.

Glossary Read the Glossary for definitions of some of the terms used in this manual.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. xi
ID080813 Non-Confidential

 Preface
 Conventions
Conventions
The following sections describe conventions that this specification can use:
• Typographic conventions.
• Signals.
• Timing diagrams.
• Numbers on page xiii.
• Pseudocode descriptions on page xiii.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:

• A URL, for example, http://infocenter.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Pseudocode descriptions on page xiii.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example AMBA.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix DBG Denotes debug signals.

Timing diagrams

The figure named Key to timing diagram conventions on page xiii explains the components used in timing diagrams.
Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in
the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that
time. The actual level is unimportant and does not affect normal operation.
xii Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

 Preface
 Conventions
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to
the bus change shown in Key to timing diagram conventions. If a timing diagram shows a single-bit signal in this
way then its value does not affect the accompanying description.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and is described in Appendix C Pseudocode Definition.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. xiii
ID080813 Non-Confidential

 Preface
 Additional reading
Additional reading
This section lists relevant publications from ARM and third parties.

See the Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

See the following documents for other information that is relevant to this ADIv5 specification:

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).

• Embedded Trace Macrocell Architecture Specification (ARM IHI 0014).

• CoreSight Architecture Specification (ARM IHI 0029).

• CoreSight SoC Technical Reference Manual (ARM DDI 0480).

• AMBA® Specification (Rev 2.0) (ARM IHI 0011).

• AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and ACE-Lite™
(ARM IHI 0022).

• AMBA® 3 AHB-Lite™ Protocol Specification (ARM IHI 0033).

• AMBA® 4 APB™ Protocol Specification (ARM IHI 0024).

• ARM1136JF-S™ and ARM1136J-S™ Technical Reference Manual (ARM DDI 0211).

Other publications

The following books are referred to in this specification, or provide more information:
• IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE 1149.1-2001).
• JEDEC Standard Manufacture’s Identification Code (JEDEC JEP106).
xiv Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this specification, send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM IHI 0031C.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. xv
ID080813 Non-Confidential

 Preface
 Feedback
xvi Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 1
Introduction

This chapter introduces the ARM Debug Interface architecture and summarizes the design decisions required for an
ARM Debug Interface implementation. It also describes how the Debug Access Port (DAP) accesses registers
within the DAP and in the connected system. This description is based on JTAG-DP accesses to a Debug Interface,
and shows how registers are located at different levels within the Debug Interface model. It contains the following
sections:
• About the ARM Debug Interface version 5 (ADIv5) on page 1-18.
• The function of the ARM Debug Interface on page 1-20.
• The subdivisions of an ARM Debug Interface v5 implementation on page 1-22.
• The external interface, the Debug Port (DP) on page 1-23.
• The resource interface, the Access Ports (APs) on page 1-24.
• Design choices and implementation examples on page 1-28.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-17
ID080813 Non-Confidential

1 Introduction
1.1 About the ARM Debug Interface version 5 (ADIv5)
1.1 About the ARM Debug Interface version 5 (ADIv5)
The terms ARM Debug Interface v5 and ADIv5 refer to the major revision of ADI, that is, to v5.0, and also to v5.1,
or any other revision of ADIv5.

ADIv5 is the fifth major version of the ARM Debug Interface.

All previous versions of the ADI are based on the IEEE 1149.1 JTAG interface, but are intended only for accessing
ARM processor cores and Embedded Trace Macrocells (ETMs):

Debug interface versions 1 and 2

Implemented on the ARM7TDMI® and ARM9® families of processor cores.

Debug interface version 3

Introduced for the ARM10™ processor family.

ADIv4 The first version of the ADI to be linked with an ARM architecture version, rather than an
implementation of an ARM processor core. ARM recommends that ADIv4 is used with
implementations of the ARMv6 architecture.

ADIv5 removes the link between the ADI and ARM processor cores. An implementation of ADIv5 can access any
debug component that complies with the ADIv5 specification. The details of the resources accessed by ADIv5 are
defined by the resources, rather than the ADI.

ADIv5 has three major advantages:

• ADIv5 interfaces can access a greater range of devices.

• Implementation of the ADI can be separated from implementation of the resource, enabling greater reuse of
implementations. However, this separation is not required.

• Use of the ADIv5 abstractions permits reuse of software tools, such as debuggers.

Versions 1 to 4 of the debug interface require the physical connection to the interface to use an IEEE 1149.1 JTAG
interface. ADIv5 specifies two alternatives for the physical connection:
• An IEEE 1149.1 JTAG interface.
• A low pin count Serial Wire Debug interface.

The main components of ADIv5 are split between two main architectures:
• The Access Port (AP) architecture.
• The Debug Port (DP) architecture.

1.1.1 About the versions of ADIv5

ADI versions 5.1 and 5.2 are backwards-compatible extensions of the original ARM Debug Interface Architecture
Specification v5. From the introduction of ADIv5.1, the original ADIv5 specification is described as ADIv5.0.

Note
 ADIv5.1 was originally defined only by a supplement to the original ARM Debug Interface v5 Architecture
Specification, issue A of this document. Issue B of this document, ARM IHI 0031B, is the first publication of an
integrated description of ADIv5.0, ADIv5.1, and ADIv5.2.

Features defined by ADIv5.0

ADIv5.0 defines:

• Two Debug Ports, JTAG-DP and SW-DP.

• Two Access Ports:

— JTAG-AP, for accessing legacy JTAG components.
1-18 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

1 Introduction
1.1 About the ARM Debug Interface version 5 (ADIv5)
— MEM-AP, for accessing memory and components with memory-mapped interfaces.

• The identification model for Access Ports.

• A discovery mechanism for components attached to a MEM-AP.

Features added in v5.1

ADIv5.1 formalizes version numbering of Debug Ports, and defines:

• The programmers’ model of the JTAG-DP defined by ADIv5.0 as Debug Port architecture version 0 (DPv0).

• The programmers’ model of the SW-DP defined by ADIv5.0 as Debug Port architecture version 1 (DPv1).

ADIv5.1 also adds:
• Extensions to the AP identification model.
• Standard definitions for MEM-AP implementations for AMBA bus protocols.
• JTAG support in Debug Port architecture version 1.
• The Minimal Debug Port extension.
• Debug Port architecture version 2 (DPv2).
• Multiple protocol interoperability.
• Serial Wire Debug protocol version 2, that provides a multi-drop capability.

The following subsections give more information about ADIv5 features added in ADIv5.1.

Multiple Protocol Interoperability

ADIv5.1 introduces multiple protocol interoperability extensions, that provide:

• Simple switching between Serial Wire Debug and JTAG protocols. For more information see Chapter 5 The
Serial Wire/JTAG Debug Port (SWJ-DP).

• A dormant state, for interoperability with other protocols. For more information see Dormant operation on
page 5-113.

Serial Wire Debug protocol extensions

ADIv5.1 introduces Serial Wire Debug protocol version 2 that extends the Serial Wire Debug protocol, adding
multi-drop capability. See Chapter 4 The Serial Wire Debug Port (SW-DP).

Minimal Debug Port extension

The Minimal Debug Port (MINDP) is a simplified version of the Debug Port intended for low gate-count
implementations. See MINDP, Minimal Debug Port extension on page 2-36.

Features added in ADIv5.2

ADIv5.2 includes:

• Extensions to the MEM-AP programmers’ model to support:
— Large physical address spaces of up to 64 bits.
— Data sizes greater than 32 bits.
— Barrier operations.

• Extended definitions of MEM-AP to include extensions for:
— AMBA AXI3, AXI4, and AXI4-Lite.
— AMBA ACE.

• Recommended implementations for:
— ARMv7-A processors including the Large Physical Address Extension.
— ARMv8-A processors.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-19
ID080813 Non-Confidential

1 Introduction
1.2 The function of the ARM Debug Interface
1.2 The function of the ARM Debug Interface
This chapter describes the context in which an ARM Debug Interface (ADI) might be implemented.

This section gives a summary of the types of debug functionality provided by debug components in an embedded
System on Chip (SoC). This information is given in the subsections:
• Embedded core debug functionality.
• System debug functionality.

The ADI is designed to provide easy access to SoC debug components.

See Compatibility between CoreSight and ARM Debug interfaces on page 1-21 for information about compatibility
with the CoreSight™ architecture.

1.2.1 Embedded core debug functionality

To enable applications to be debugged, an embedded microprocessor might provide facilities that can:

• Modify the state of the processor. An external host must be able to modify the contents of the internal
registers and the memory system.

• Determine the state of the processor. An external host must be able to read the values of the internal registers,
and read from the memory system.

• Program debug events. An external host must be able to configure the debug logic so that when a special
event occurs, such as the program flow reaching a certain instruction in the code, the core enters a special
execution mode in which its state can be examined and modified by an external system. In this chapter, this
special execution mode is referred to as Debug state.

• Force the processor to enter or exit Debug state from an external system.

• Determine when the core enters or leaves Debug state.

• Trace program flow around programmable events.

Two examples of technologies that provide these facilities are:

• The ARMv7 Debug Architecture, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R
edition.

• The Embedded Trace Macrocell, see the ETM Architecture Specification.

In addition, the ARM Debug Interface v5 can access legacy components that implement an IEEE 1149.1 JTAG
interface. This means that the ADIv5 can access processors that implement earlier versions of the ADI.

1.2.2 System debug functionality

Debug extends beyond the boundaries of an embedded microprocessor core. Engineers must be able to debug:
• Components within an embedded SoC.
• The interconnection fabric of the system.

Examples of debug facilities that might be provided at the system level, outside the embedded microprocessor core,
include:
• Facilities to:

— Examine the state of the system, including state that might not be visible to the embedded
microprocessor core.

— Trace accesses on the interconnection fabric. These might be accesses by the microprocessor core, or
accesses by other devices such as Direct Memory Access (DMA) engines.

• Mechanisms for low-intrusion diagnostic messaging between software and a debugger.
• Cross-triggering mechanisms that enable debug components to signal each other.
• A fabric for the efficient streaming and collection of diagnostic information, such as program trace.
1-20 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

1 Introduction
1.2 The function of the ARM Debug Interface
As far as possible, functions operate with minimal change to the behavior of the system being debugged.

Examples of technologies that provide these facilities are:
• The ADIv5 Debug Access Port (DAP).
• The CoreSight debug architecture. For more information see the CoreSight Architecture Specification.
• The CoreSight components. For more information see the CoreSight SoC Technical Reference Manual.

1.2.3 Compatibility between CoreSight and ARM Debug interfaces

ADIv5 is designed to be compatible with the ARM CoreSight architecture:
• A CoreSight interface implementation is a valid implementation of ADIv5.
• The ADIv5 specification does not require debug components to be CoreSight-compliant.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-21
ID080813 Non-Confidential

1 Introduction
1.3 The subdivisions of an ARM Debug Interface v5 implementation
1.3 The subdivisions of an ARM Debug Interface v5 implementation
Logically, the ARM Debug Interface (ADI) consists of:

• A number of registers that are private to the interface. These are referred to as the Debug Access Port (DAP)
registers.

• A means to access the DAP registers.

• A means to access the debug registers of the debug components to which the DAP is connected.

This logical organization of the ADI is shown in Figure 1-1.

Figure 1-1 Subdivisions of an ARM Debug Interface v5 implementation

Because the DAP logically consists of two parts, the Debug Port and the Access Ports, it must support two types of
access:
• Access to the Debug Port (DP) registers. This is provided by Debug Port accesses (DPACC).
• Access to the Access Port (AP) registers. This is provided by Access Port accesses (APACC).

A DAP can include multiple Access Ports.

An AP is responsible for accessing debug component registers, such as processor debug logic, ETM and trace port
registers. These accesses are made in response to APACC accesses in a manner defined by the AP.

The method of making these accesses depends on the Debug Port that is implemented, as summarized in The
external interface, the Debug Port (DP) on page 1-23.

More generally, examples of possible targets of AP accesses include:
• The debug registers of the core processor.
• ETM or Trace Port debug registers.
• A ROM table, see Chapter 10 ROM Tables.
• A memory system.
• A legacy JTAG device.

Note
 Although this specification logically divides the ADIv5 into the elements shown in Figure 1-1, this specification
does not require implementations to be structured in this way. This specification describes the programmers’ model
for the ADI, and these subdivisions give a convenient representation of the programmers’ model.

Physical
connection Resource

ARM Debug Interface v5
System being

debugged

Resource-
specific

transport ‡

‡ For example, a debug bus

Debug
Port
(DP)

Access
Port
(AP)

AP Access

Debug Access Port (DAP)
1-22 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

1 Introduction
1.4 The external interface, the Debug Port (DP)
1.4 The external interface, the Debug Port (DP)
An ARM Debug Interface implementation includes a single Debug Port (DP) that provides the external physical
connection to the interface. The ARM Debug Interface v5 specification supports the following DP implementations:
• The JTAG Debug Port (JTAG-DP), see The JTAG Debug Port (JTAG-DP).
• The Serial Wire Debug Port (SW-DP), see The Serial Wire/JTAG Debug Port (SWJ-DP).
• The Serial Wire/JTAG Debug Port (SWJ-DP), see Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP).

These alternative DP implementations provide different mechanisms for making Access Port and Debug Port
accesses. However, they have a number of common features. In particular, each implementation provides:
• A means of identifying the DAP, using an identification code scheme.
• A means of making DP and AP accesses.
• A means of aborting a register access that appears to have failed.

1.4.1 The JTAG Debug Port (JTAG-DP)

The JTAG-DP is based on the IEEE 1149.1 Test Access Port (TAP) and Boundary Scan Architecture, widely
referred to as JTAG. Because the JTAG-DP is intended for accessing debug components, the naming conventions
of IEEE 1149.1 are changed, as shown in Table 1-1:

The signal naming conventions of IEEE 1149.1 are modified in a similar way, for example the IEEE 1149.1 TDI
signal is named DBGTDI on a JTAG Debug Port. See Physical connection to the JTAG-DP on page 3-71 for the
complete list of the JTAG-DP signal names.

For more information see IEEE 1149.1 Test Access Port and Boundary Scan Architecture.

With the JTAG-DP, IEEE 1149.1 scan chains read or write register information. The DBGTAP scan chains are
described in more detail in Chapter 3 The JTAG Debug Port (JTAG-DP).

1.4.2 The Serial Wire Debug Port (SW-DP)

The SW-DP is a two-pin serial interface that uses a packet-based protocol to read or write registers.

Communications with the SW-DP use a three-phase protocol:
• A host-to-target packet request.
• A target-to-host acknowledge response.
• A data transfer phase, if required. This can be target-to-host or host-to-target, depending on the request made

in the first phase.

A packet request from a debugger indicates whether the required access is to a DP register (DPACC) or to an AP
register (APACC), and includes a two-bit register address.

This protocol is described in more detail in Chapter 4 The Serial Wire Debug Port (SW-DP).

1.4.3 The Serial Wire/JTAG Debug Port (SWJ-DP)

The SWJ-DP interface provides a mechanism to select between Serial Wire Debug (SWD) and JTAG Data Link
protocols. This enables the JTAG-DP and SW-DP to share pins.

Table 1-1 Comparison of IEEE 1149.1 and JTAG-DP naming

IEEE 1149.1 JTAG-DP JTAG-DP name

TAP DBGTAP Debug Test Access Port.

TAPSM DBGTAPSM Debug Test Access Port State Machine.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-23
ID080813 Non-Confidential

1 Introduction
1.5 The resource interface, the Access Ports (APs)
1.5 The resource interface, the Access Ports (APs)
An Access Port provides the interface between a DAP and one or more debug components. That is, the Access Port
of the DAP connects through a resource-specific transport, such as a debug bus, to a resource that is part of the
system being debugged. This model is used extensively in this specification.

The ADIv5 components defined by this specification include two alternatives for the resource-specific transport that
connects the DAP to the system being debugged:
• A DAP can connect to a memory-mapped resource, such as a debug peripheral. For such connections, ADIv5

defines a Memory Access Port (MEM-AP) programmers’ model.
• A DAP can connect to a legacy IEEE 1149.1 JTAG device. For such connections, ADIv5 defines a JTAG

Access Port (JTAG-AP) and associated programmers’ model.

The complete description of these is summarized in:
• Guide to the detailed description of a MEM-AP on page 1-26.
• Guide to the detailed description of a JTAG-AP on page 1-27.

This specification does not specify exact requirements about the transport between the AP and the resource. In
particular, it does not require an MEM-AP to use a bus to connect to the system being debugged. For example,
ADIv5 might be directly integrated into the resource.

However, referring to Figure 1-1 on page 1-22, logically a MEM-AP always accesses a memory-mapped resource
in the system being debugged. For this reason, this specification describes MEM-AP accesses to the system being
debugged as memory accesses.

Note
 ARM might define additional access ports in the future. In addition, an ARM Debug Interface (ADI) might include
additional access ports, not specified by ARM.

All Access Ports must follow a base standard for identification, and debuggers must be able to recognize and ignore
Access Ports that they do not support. For more information see Chapter 6 The Access Port (AP).

As described:
• The simplest ADI has only one AP. This can be either a MEM-AP or a JTAG-AP.
• More ADIs can have multiple APs. These might be:

— A mixture of MEM-APs and JTAG-APs.
— All MEM-APs.
— All JTAG-APs.

The Debug Port uses exactly the same process for accessing MEM-APs and JTAG-APs. However, the connection
to the system being debugged is very different for MEM-APs and JTAG-APs. Using the Access Port to access debug
resources on page 1-27 describes how to access any AP (MEM-AP or JTAG-AP), and summarizes how this gives
access to resources in the system being debugged.

1.5.1 Using the Debug Port to access Access Ports

Figure 1-2 on page 1-26 shows the different levels between the physical connection to the debugger and the debug
resources of the system being debugged. These levels are designed to enable efficient access to the system being
debugged, and several levels provide registers within the DAP. This section describes how these register accesses
are implemented.

The DAP supports two types of access, Debug Port (DP) accesses and Access Port (AP) accesses. Because Debug
Ports usually have serial interfaces, the methods of making these accesses are kept as short as possible. However,
all accesses are 32-bits.

The description given here is of scan chain access to the registers, from a debugger connected to a JTAG Debug
Port. However, the process is very similar when the access is from a Serial Wire Debug interface connection to a
SW-DP. Differences when accessing the registers from a Serial Wire Debug interface connection are described in
Chapter 4 The Serial Wire Debug Port (SW-DP).
1-24 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

1 Introduction
1.5 The resource interface, the Access Ports (APs)
Every AP or DP access transaction from the debugger includes two address bits, A[3:2]:
• For a DP register access, the address bits A[3:2] and SELECT.DPBANKSEL determine which register is

accessed. SELECT is a DP register.
• For an AP register access, SELECT.APSEL selects an AP to access, and the address bits A[3:2] are combined

with SELECT.APBANKSEL to determine which AP register is accessed, as summarized in Figure 1-2 on
page 1-26. That is, the two address bits A[3:2] are decoded to select one of the four 32-bit words from the
register bank indicated by SELECT.APBANKSEL in the AP indicated by SELECT.APSEL.

Bits [1:0] of all AP and DP register addresses are 0b00.

For example, to access the register at address 0x14 in AP number 0, the debugger must:
• Use a DP register write to set:

— SELECT.APSEL to 0x00.
— SELECT.APBANKSEL to 0x1.

• Use an AP register access with A[3:2] = 0b01.
The DAP combines A[3:2] with SELECT.APBANKSEL to generate the AP register address, 0x14. The
debugger can access any of the four registers from 0x10 to 0x1C without changing SELECT.

This access model is shown in Figure 1-2 on page 1-26. This figure shows how the contents of the SELECT register
are combined with the A[3:2] bits of the APACC scan-chain to form the address of a register in an AP. Other parts
of the JTAG-DP are also shown. These are explained in greater detail in later sections.

The implementation of this model is shown, also, in:
• Figure 7-1 on page 7-129, for a MEM-AP implementation.
• Figure 8-1 on page 8-162, for a JTAG-AP implementation.

These figures give more details of the connections to the debug or system resources.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-25
ID080813 Non-Confidential

1 Introduction
1.5 The resource interface, the Access Ports (APs)
Figure 1-2 Structure of the Debug Access Port, showing DPv0 JTAG-DP accesses to a generic AP

1.5.2 Guide to the detailed description of a MEM-AP

To understand the operation and use of a MEM-AP, you must understand:
• The MEM-AP itself.
• The MEM-AP registers.
• The standard debug components registers that you access through the MEM-AP.

The MEM-AP is described in the following chapters of this specification:
• Chapter 6 The Access Port (AP).
• Chapter 7 The Memory Access Port (MEM-AP).

Data[31:0] RnWA[3:2]

DPACC

Note: Register field widths are not to scale.
 For example, RnW is a single bit.

APACC

D
B

G
TD

I

RnWA[3:2]Data[31:0]

Transaction
counter

Pushed
compare

logic

RnWA[3:2]Data[31:0]

D
P

R
eg

is
te

rs
 (I

R
=D

PA
C

C
)

C
on

tro
l/S

ta
tu

s
(C

TR
L/

S
TA

T)

R
es

er
ve

d

A
P

S
el

ec
t (

S
E

LE
C

T)

R
ea

d
B

uf
fe

r (
R

D
B

U
FF

)

0
x
0

0
x
4

0
x
8

0
x
C

JTAG
Debug Port
(JTAG-DP)

APSEL
decode

Debug TAP
State Machine
(DBGTAPSM)

D
B

G
TD

O

D
B

G
TM

S

DBGTAP
scan chains

D
eb

ug
 P

or
t

A
P

A
cc

es
s

A
cc

es
s

P
or

t

DP Access

A
PA

C
C

A
cc

es
s

R
es

ul
t a

nd
 S

ta
tu

s

D
PA

C
C

AP Access

Debug
Port
(DP)

Access
Port
(AP)

Debug
resources

ABORT

IDCODE
IDCODE[31:0]

RnWA[3:2]ABORT register[31:0]

SELECT[7:4]SELECT[31:24]

A[7:4] selects the register bank
A[3:2] selects register within bank

Access
Port (AP)

Access
Port (AP)

B
an

ke
d

A
P

re
gi

st
er

s

B
an

k
15

 R
eg

. 0
 (R

eg
. 6

0)

B
an

k
0
x
F

0
x
F
0

0
x
F
4

0
x
F
8

0
x
F
C

B
an

k
15

 R
eg

. 1
 (R

eg
. 6

1)

B
an

k
15

 R
eg

. 3
 (R

eg
. 6

2)

Id
en

tif
ic

at
io

n
R

eg
is

te
r (

ID
R

)

B
an

k
1

R
eg

. 0
 (R

eg
. 4

)

B
an

k
0
x
1

0
x
1
0

0
x
1
4

0
x
1
8

0
x
1
C

B
an

k
1

R
eg

. 1
 (R

eg
. 5

)

B
an

k
1

R
eg

. 2
 (R

eg
. 6

)

B
an

k
1

R
eg

. 3
 (R

eg
. 7

)

B
an

k
0

R
eg

. 0

B
an

k
0
x
0

0
x
0
0

B
an

k
0

R
eg

. 1
0
x
0
4

B
an

k
0

R
eg

. 2
0
x
0
8

B
an

k
0

R
eg

. 3
0
x
0
C

Generic Access Port (AP)

Debug
resources

A[7:4] RnWA[3:2]Data[31:0]
1-26 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

1 Introduction
1.5 The resource interface, the Access Ports (APs)
The MEM-AP provides access to zero, one, or more debug components. Any debug component that complies with
the ARM Generic Identification Registers specification implements a set of Component Identification Registers.
These are described in Chapter 9 Component and Peripheral ID Registers.

If the MEM-AP connects to more than one debug component then it must also include at least one ROM Table.
ROM tables are accessed through a MEM-AP, and are described in Chapter 10 ROM Tables.

Note
 As shown in Design choices and implementation examples on page 1-28, a system with only one functional debug
component might also implement a ROM Table.

1.5.3 Guide to the detailed description of a JTAG-AP

To understand the operation and use of a JTAG-AP, you must understand:
• The JTAG-AP itself.
• The JTAG-AP registers.

The JTAG-AP is described in the following chapters of this specification:
• Chapter 6 The Access Port (AP).
• Chapter 8 The JTAG Access Port (JTAG-AP).

Note
 The JTAG-AP provides a standard JTAG connection to one or more legacy components. The connection between
the JTAG-AP and the components is described by the IEEE 1149.1-1990 IEEE Standard Test Access Port and
Boundary Scan Architecture. Details of the use of this connection are outside the scope of this specification.

1.5.4 Using the Access Port to access debug resources

Accessing the AP gives access to the system being debugged, shown as access to Debug resources in Figure 1-2 on
page 1-26. In summary:

• With a MEM-AP, the debug resources are logically memory-mapped, and the connection between the
MEM-AP and a debug resource is outside the scope of this specification. Chapter 7 The Memory Access Port
(MEM-AP) describes the method of accessing these resources, in the section MEM-AP register accesses and
memory accesses on page 7-130.

• With a JTAG-AP, the debug resources are connected through a standard JTAG serial connection, as defined
in IEEE 1149.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture. More information
about accessing the resources is given in Chapter 8 The JTAG Access Port (JTAG-AP).
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-27
ID080813 Non-Confidential

1 Introduction
1.6 Design choices and implementation examples
1.6 Design choices and implementation examples
The subdivisions of an ARM Debug Interface v5 implementation on page 1-22 introduces the logical subdivisions
of an ARM Debug Interface, shown in Figure 1-1 on page 1-22. This section outlines the design choices that must
be made before implementing an ARM Debug Interface. The following subsections consider each of the two
functional blocks of the interface:
• Choices for the Debug Port (DP).
• Choices for the Access Ports (APs).

Note
 This Architecture Specification is written for engineers implementing an ARM Debug Interface, and for those using
an ARM Debug Interface. If you are reading the Specification to learn more about a particular ARM Debug
Interface implementation, you must understand the design choices that have been made in that implementation.
Those choices might be implicit in the connections to the Debug Interface. If you are uncertain about the choices,
you must obtain details from the implementer of the Debug Interface.

1.6.1 Choices for the Debug Port (DP)

An ADI Debug Access Port has a single Debug Port. The following subsections summarize the implementation
options for the DP:
• The Serial Wire Debug Port (SW-DP).
• The JTAG Debug Port (JTAG-DP).
• The Serial Wire/JTAG Debug Port (SWJ-DP).

If you are designing or specifying an ARM Debug Interface, you must decide which of these Debug Ports to
implement.

Note
 • In illustrations of the ARM Debug Interface, the Debug Port can be any of the following three options: Serial

Wire Debug Port, a JTAG Debug Port, or a Serial Wire/JTAG Debug Port.

• ARM might define other DPs in the future.

1.6.2 Choices for the Access Ports (APs)

An ARM Debug Interface always includes at least one Access Port, and might contain multiple APs. The simplest
ARM Debug Interface uses a single AP to connect to a single debug component. Typical examples of this are:

• Using an MEM-AP to connect to a single debug component, such as a microprocessor core, as shown in
Figure 1-3.

• Using a JTAG-AP to connect to a single legacy IEEE 1149.1 device, as shown in Figure 1-4 on page 1-29.

Figure 1-3 Simple ARM Debug Interface MEM-AP Implementation

Physical
connection

Processor
Debug

Register
File

ARM Debug Interface v5
Microprocessor

core

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

AP Access

Debug Access Port (DAP)

Memory
access
1-28 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

1 Introduction
1.6 Design choices and implementation examples
Figure 1-4 Simple ARM Debug Interface JTAG-AP Implementation

However, ROM tables on page 7-128 explains that a system with only a single debug component often implements
a ROM Table. This gives an implementation similar to the example shown in Figure 1-5.

Figure 1-5 Simple example of an ARM Debug Interface implementation, with ROM Table

Because a single ADI can include multiple APs, the design choices relating to APs are at two levels:

• Choices about the number of APs in the ADI, and whether each AP is a MEM-AP or a JTAG-AP. These
decisions are considered in Top-level AP planning choices.

• The choices that have to be made for each implemented AP. These choices are considered in:
— Choices for each JTAG-AP on page 1-31.
— Choices for each MEM-AP on page 1-30.

Top-level AP planning choices

In a more complex system, there can be multiple Access Ports, and each access port can be connected to multiple
components, or multiple address spaces. Three ways in which an AP can be implemented are:

• As a Memory Access Port (MEM-AP) with a memory-mapped debug bus connection. The debug bus
connects directly to one or more debug register files.

• As a Memory Access Port with a memory-mapped system bus connection. The MEM-AP connection to the
system bus provides access to one or more debug register files.

• As a JTAG Access Port (JTAG-AP). This connects directly to one or more JTAG devices, and enables
connection to legacy hardware components.

Note
 The connection between legacy hardware components and a JTAG-AP is defined by the JTAG standard. For

more information, see Chapter 8 The JTAG Access Port (JTAG-AP).

Debug
Port
(DP)

JTAG
Access Port
(JTAG-AP)

Physical
connection

AP Access

Debug Access Port (DAP)

Legacy
IEEE 1149.1

device

ARM Debug Interface v5
System under

debug

JTAG
connection

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

Physical
connection

AP Access
Debug Bus

Access

Debug Access Port (DAP)

ARM Debug Interface v5 Microprocessor
core

Processor
Debug Register

File

ROM
Table
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-29
ID080813 Non-Confidential

1 Introduction
1.6 Design choices and implementation examples
If you are designing or specifying an ARM Debug Interface, you must decide how many APs are required, and how
each of them is implemented. This depends largely on the debug components of the system to which your ADI
connects.

Figure 1-6 shows a more complex ARM Debug Interface, and illustrates the different Access Port options.

Figure 1-6 Complex ARM Debug Interface, showing the Access Port options

Note
 The ARM Debug Interface v5 architecture specification:

• Supports additional Access Ports. Every Access Port must follow the base standard for identification given
in this specification. Debuggers must be able to ignore Access Ports that they do not recognize.

• Permits multiple register files to be accessed by a single Memory Access Port. This specification includes a
base standard for register file identification, and debuggers must be able to ignore register files that they do
not recognize or do not support.

• Permits a Memory Access Port to access a mixture of system memory and debug register files.

In any ARM Debug Interface v5 implementation, such as those illustrated in Figure 1-2 on page 1-26, the Debug
Port can be any Debug Port defined by ADIv5.

Choices for each MEM-AP

The main decisions to be made for a MEM-AP concern the connection between the MEM-AP and the
memory-mapped debug components connected to it. These decisions depend largely on the requirements of those
debug components. They include:
• Whether a bus is required for this connection.
• If a bus connection is implemented, and the width of the bus.
• The memory map of the MEM-AP address space.

If a MEM-AP connects to more than one debug component then the system must include one or more ROM Tables,
to provide information about the debug system. However, a system designer might chose to include a ROM table in
a system that has only one other component. See ROM tables on page 7-128 for more information.

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

Physical
connection

Debug Bus
Access

Debug Access Port (DAP)

ARM Debug Interface v5 System under debug

JTAG
Access Port
(JTAG-AP)

JTAG
device

JTAG
device

ROM Table

Memory
Access Port
(MEM-AP)

System Bus
Access

AP
Access

S
ys

te
m

 B
us

ETM Debug
Register file

ROM Table

Processor Debug
Register file

System
memory

ETM Debug
Register file

Processor Debug
Register file

JTAG
connections
1-30 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

1 Introduction
1.6 Design choices and implementation examples
It is IMPLEMENTATION DEFINED whether a MEM-AP includes certain features, for more information see:
• MEM-AP functions on page 7-132.
• MEM-AP implementation requirements on page 7-142.

The implementation of the connection between the MEM-AP and the debug components can determine whether
some of these features are included. In particular, certain features must be included if the connection is less than
32-bits wide. The debug components themselves might place limitations on the connection, for example a
component might require 32-bit accesses.

For more information about implementing a MEM-AP see Chapter 7 The Memory Access Port (MEM-AP).

Choices for each JTAG-AP

A single JTAG-AP can connect to up to eight JTAG scan chains. These scan chains can be split across multiple
devices or components within the system being debugged.

In addition, a single JTAG scan chain can contain multiple TAPs. However, ARM recommends that each scan chain
connected to a JTAG-AP contains only one TAP.

Therefore, the design decisions that must be made for each JTAG-AP are:
• The number of JTAG scan chains connected to the JTAG-AP.
• Whether each scan chain contains one or more TAPs.

For more information, see Chapter 8 The JTAG Access Port (JTAG-AP).
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-31
ID080813 Non-Confidential

1 Introduction
1.6 Design choices and implementation examples
1-32 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 2
The Debug Port (DP)

This chapter describes the features that are implemented by both Serial Wire Debug Ports (SW-DPs) and on JTAG
Debug Ports (JTAG-DPs), and by the combined Serial Wire/JTAG Debug Port (SWJ-DP). It contains the following
sections:
• Common Debug Port features on page 2-34.
• DP architecture versions on page 2-40.
• DP register descriptions on page 2-45.
• System and debug power and debug reset control on page 2-62.

Note
 The following chapters give additional information about DPs:
• Chapter 3 The JTAG Debug Port (JTAG-DP).
• Chapter 4 The Serial Wire Debug Port (SW-DP).
• Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP).
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-33
ID080813 Non-Confidential

2 The Debug Port (DP)
2.1 Common Debug Port features
2.1 Common Debug Port features
The following sections describe the features that are common to all Debug Port implementations:
• Sticky flags and DP error responses.
• MINDP, Minimal Debug Port extension on page 2-36.
• Pushed-compare and pushed-verify operations on page 2-36.
• The transaction counter on page 2-38.
• Power and reset control on page 2-38.

2.1.1 Sticky flags and DP error responses

Within the Debug Port, error conditions are recorded using sticky flags in the DP CTRL/STAT register. These error
conditions are described in the following sections:
• Read and write errors.
• Overrun detection.
• Protocol errors, SW-DP on page 2-36.

In addition, if pushed transactions are supported, another sticky flag, CTRL/STAT.STICKYCMP, reports the result
of pushed operations, see Pushed-compare and pushed-verify operations on page 2-36. CTRL/STAT.STICKYCMP
behaves in the same way as the sticky flags described in this section.

Note
 When set to 1, a sticky flag remains set until it is explicitly cleared to 0. Even if the condition that caused the flag
to be set to 1 no longer applies, the flag remains set until the debugger clears it to 0.

The method for clearing sticky flags is different for the JTAG-DP and the SW-DP. Clearing the sticky error and
compare flags in the CTRL/STAT register on page 2-50 summarizes how these flags are cleared to 0.

When an error is flagged, the current transaction is completed and any additional APACC (AP Access) transactions
are discarded until the sticky flag is cleared to 0.

The DP response to an error condition might be:
• To signal an error response immediately. This happens with the SW-DP.
• To immediately discard all transactions as complete. This happens with the JTAG-DP.

This means that after performing a series of APACC transactions, a debugger must check the CTRL/STAT register
to check if an error occurred. If a sticky flag is set to 1, the debugger clears the flag to 0 and then, if necessary,
initiates more APACC transactions to determine the cause of the sticky flag condition. Because the flags are sticky,
the debugger does not have to check the flags after every transaction. The debugger must only check the
CTRL/STAT register periodically. This reduces the overhead of checking for errors. For details of how to clear
sticky flags, see Clearing the sticky error and compare flags in the CTRL/STAT register on page 2-50.

Read and write errors

A read or write error might occur within the DAP, or might come from the resource being accessed. In either case,
when the error is detected the Sticky Error flag, CTRL/STAT.STICKYERR is set to 1.

For example, a read or write error might be generated if the debugger makes an AP transaction request while the
debug power domain is powered down. See Power and reset control on page 2-38 for information about power
domains.

Overrun detection

Debug Ports support an overrun detection mode. This mode enables a user to send blocks of commands to an
emulator on a high latency, high throughput, connection. These commands must be sent with sufficient in-line
delays to make overrun errors unlikely. However, the DAP can be programmed so that, if an overrun error occurs,
2-34 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.1 Common Debug Port features
the DAP flags the error by setting the Sticky Overrun flag, CTRL/STAT.STICKYORUN to 1. In this overrun
detection mode the debugger must check for overrun errors after each sequence of APACC transactions, by
checking this flag.

Overrun detection mode is enabled by setting the Overrun Detect bit, CTRL/STAT.ORUNDETECT, to 1.

As the JTAG-DP and SW-DP protocols differ, the exact behavior in overrun detection mode is DATA LINK DEFINED:

JTAG-DP The Sticky Overrun flag, CTRL/STAT.STICKYORUN is set to 1 if the response to any transaction
is other than OK/FAULT.

The response is WAIT until the previous Access Port (AP) transaction completes. Following
responses are OK/FAULT. See Sticky overrun behavior on DPACC and APACC accesses on
page 3-83.

SW-DP The Sticky Overrun flag, CTRL/STAT.STICKYORUN is set to 1 if the response to any transaction
is other than OK.

The first response to a transaction when a previous AP transaction has not completed is WAIT.
Following responses are FAULT, because the STICKYORUN bit is set to 1. See Sticky overrun
behavior on page 4-98.

The value of the Sticky Error flag, CTRL/STAT.STICKYERR, is not changed.

The debugger must clear STICKYORUN to 0 to enable transactions to resume.

Note
 The method of clearing the STICKYORUN flag to 0 is different for a JTAG-DP and a SW-DP. See Clearing the
sticky error and compare flags in the CTRL/STAT register on page 2-50 for more information.

The behavior of the Debug Port when the Sticky Overrun flag is set to 1 is DATA LINK DEFINED.

If a new transaction is attempted, and results in an overrun error, before an earlier transaction has completed, the
first transaction still completes normally. Other sticky flags might be set to 1 on completion of the first transaction.

If the overrun detection mode is disabled, by clearing the ORUNDETECT flag to 0, while STICKYORUN is set to
1, the subsequent value of STICKYORUN is UNKNOWN. To leave overrun detection mode, a debugger must:
• Check the value of the CTRL/STAT.STICKYORUN bit.
• Clear the STICKYORUN bit to 0, if it is set to 1.
• Clear the ORUNDETECT bit to 0, to disable overrun detection mode.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-35
ID080813 Non-Confidential

2 The Debug Port (DP)
2.1 Common Debug Port features
Protocol errors, SW-DP

Note
 Although these errors can only occur with the SW-DP, they are described in this chapter because they are part of the
sticky flags error-handling mechanism.

On the Serial Wire Debug interface, protocol errors can occur, for example because of wire-level errors. These errors
might be detected by the SW-DP:

• If the SW-DP detects a protocol error in the packet request, the Debug Port does not respond to the message.

• If the SW-DP detects a parity error in the data phase of a write transaction, it sets the Sticky Write Data Error
flag, CTRL/STAT.WDATAERR, to 1. This sticky flag is treated in the same way as the other sticky flags
described in this section.

For more information see Parity on page 4-91 and Protocol error response on page 4-97.

2.1.2 MINDP, Minimal Debug Port extension

The Minimal Debug Port (MINDP) programmers’ model is a is a simplified version of the Debug Port intended for
low gate-count implementations. Minimal DP implementations must use DPv1 or later.

For MINDP implementations, the following Debug Port features are removed:
• Pushed-verify operation.
• Pushed-find operation.
• The transaction counter.

When MINDP is implemented:

• MIN, bit[16] of the Debug Port ID Register, DPIDR is RAO.

• The following fields of the CTRL/STAT register, are reserved, RES0:
— TRNCNT, bits[21:12].
— MASKLANE, bits[11:8].
— STICKYCMP, bit[4].
— TRNMODE, bits[3:2].

See CTRL/STAT.

• STKCMPCLR, bit[1] of AP ABORT, is reserved, SBZ. Writing 1 to this bit is UNPREDICTABLE.

2.1.3 Pushed-compare and pushed-verify operations

Debug Ports support operations where the value written as an AP transaction is used at the DP level to compare
against a target read:

• The debugger writes a value as an AP transaction.

• The DP performs a read from the AP.

• The DP compares the two values and updates the Sticky Compare flag, CTRL/STAT.STICKYCMP based on
the result of the comparison:
— Pushed-compare sets STICKYCMP to 1 if the values match.
— Pushed-verify sets STICKYCMP to 1 if the values do not match.

Whenever the STICKYCMP bit is set to 1 in this way, any outstanding transaction repeats are canceled.

These operations are described as pushed operations. For more information see CTRL/STAT.

Each AP defines which registers support pushed transactions. If an AP register does not support pushed transactions,
or SELECT.APSEL selects an AP that is not present, then a pushed transaction sets STICKYCMP to an UNKNOWN
value. Reserved AP registers and the common AP IDR do not support pushed transactions.
2-36 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.1 Common Debug Port features
Pushed operations are enabled using the Transfer Mode bits, CTRL/STAT.TRNMODE.

The DP includes a byte lane mask, so that the compare or verify operation can be restricted to particular bytes in the
word. This mask is set using the CTRL/STAT.MASKLANE register. For more information about this masking, see
MASKLANE and the bit masking of the pushed-compare and pushed-verify operations on page 2-49.

Figure 2-1 gives an overview of the pushed operations.

Figure 2-1 Pushed operations overview

Pushed operations improve performance where writes might be faster than reads. They are used as part of in-line
tests, for example Flash ROM programming and monitor communication.

Considering pushed operations on a specific AP makes it easier to understand how these operations are
implemented. On a Memory Access Port (MEM-AP), if you perform an AP write transaction to the Data Read/Write
(DRW) register with either pushed-compare or pushed-verify active:

• The DP holds the data value from the AP write transaction in the pushed-compare logic, see Figure 1-2 on
page 1-26.

• The AP reads from the address indicated by the MEM-AP Transfer Address Register (TAR).

• The value returned by this read is compared with the value held in the pushed-compare logic, and the
CTRL/STAT.STICKYCMP bit is set depending on the result. The comparison is masked as required by the
MASKLANE bits. The logic used for this comparison is shown in Figure 2-1. For more information about
masking see MASKLANE and the bit masking of the pushed-compare and pushed-verify operations on
page 2-49.

Whenever an AP write transaction is performed with pushed-compare or pushed-verify enabled, the AP access that
results is a read operation, not a write.

Note
 • Performing an AP read transaction with pushed-compare or pushed-verify enabled causes UNPREDICTABLE

behavior.

MASKLANE[3:0]

Pushed-verify
result

(no match)

Pushed-compare
result

(match)

AP
read result

Byte lanes
abcd

APACC
write value

Byte lanes
abcd

= = abcd

Mask
generator

Byte signals
abcd

Byte lanes
a: Bits [7:0]
b: Bits [15:8]
c: Bits [23:16]
d: Bits [31:24]

&

1

= =

& & &
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-37
ID080813 Non-Confidential

2 The Debug Port (DP)
2.1 Common Debug Port features
• On a SW-DP, this means that performing an AP read transaction with pushed-compare or pushed-verify
active returns an UNKNOWN value, and the read has UNPREDICTABLE side effects, although the wire-level
protocol remains coherent.

Example uses of pushed-verify and pushed-find operation on a MEM-AP

You can use pushed-verify to verify the contents of system memory. A series of expected values are written as AP
transactions. With each write, the pushed-verify logic initiates an AP read access, and compares the result of this
access with the expected value. If the values do not match, it sets CTRL/STAT.STICKYCMP to 1. This operation
is described in more detail in Example use of pushed-verify operation on a MEM-AP on page 7-144.

You can use pushed-find to search system memory for a given value. However, this feature is most useful when
performed using the AP transaction counter, described in The transaction counter. Again, this operation is described
in more detail in Chapter 7 The Memory Access Port (MEM-AP), in the section Example using the transaction
counter for a pushed-find operation on a MEM-AP on page 7-145.

2.1.4 The transaction counter

Except in the implementation of the MINDP extension, a Debug Port must include an AP transaction counter,
CTRL/STAT.TRNCNT. The transaction counter enables a debugger to make a single AP transaction request that
generates a sequence of AP transactions. With a MEM-AP access, the AP transaction sequence might generate a
sequence of accesses to the connected memory system.

Each AP defines which registers support sequences of transactions. If an AP register does not support sequences of
transactions, or SELECT.APSEL selects an AP that is not present, then the result of a sequence of transactions to
that register is UNPREDICTABLE. Reserved AP registers and the common AP IDR do not support sequences of
transactions.

Examples of the use of the transaction counter are:

• For a memory fill operation, the transaction counter can repeatedly write a single data value supplied in the
initial AP transaction request. The MEM-AP includes a mechanism that auto-increments the access address
after each AP access. This means that a series of AP accesses under the control of the transaction counter
write the supplied data value to a sequence of memory addresses. For more information see Packed transfers
and the transaction counter on page 7-139.

• With pushed-compare or pushed-verify operation enabled, the transaction counter can be used when reading
from the DRW register, to perform a fast search or verify of an area of memory. This use is mentioned in
Example uses of pushed-verify and pushed-find operation on a MEM-AP, and is described in more detail in
Example using the transaction counter for a pushed-find operation on a MEM-AP on page 7-145.

Writing a value other than zero to the CTRL/STAT.TRNCNT field generates multiple AP transactions. For example,
writing 0x001 to this field generates two AP transactions, and writing 0x002 generates three transactions.

The transaction counter does not auto-reload when it reaches zero.

If the transaction counter is not zero, it is decremented after each successful transaction. The transaction counter is
not decremented and the transaction is not repeated if one of the following is true:
• The transaction counter is zero.
• The CTRL/STAT.STICKYERR flag is set to 1.
• The CTRL/STAT.STICKYCMP flag is set to 1.

If a sequence of operations is terminated because the Sticky Error or Sticky Compare flag was set to 1, the
transaction counter remains at the value from the last successful transaction. This means that software can recover
the location of the error, or determine where the compare or verify operation terminated.

2.1.5 Power and reset control

The Debug Port provides:
• Control bits for system and debug power control.
2-38 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.1 Common Debug Port features
• Control bits for debug reset control.

These control bits are programmable by the debugger, and drive signals into the target system. ADIv5 also
recommends an external debug interface pin for system reset control. These signals are intended as hints or stimuli
into existing power and reset controllers.

The Debug Interface does not replace the system power and reset controllers, and the Debug Interface specification
does not place any requirements on the operation of the system power and reset controllers.

For more information, see System and debug power and debug reset control on page 2-62.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-39
ID080813 Non-Confidential

2 The Debug Port (DP)
2.2 DP architecture versions
2.2 DP architecture versions
This section introduces the concept of Debug Port architecture versions and describes the Debug Port (DP) registers
in compliant implementations. More information about Debug Ports is given in the following chapters:
• Chapter 3 The JTAG Debug Port (JTAG-DP).
• Chapter 4 The Serial Wire Debug Port (SW-DP).
• Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP).

2.2.1 DP architecture versions summary

Every ARM Debug Interface includes a single Debug Port (DP) that is compliant with one of the DP architecture
versions. Table 2-1 shows the DP architecture versions.

Although the Debug Port architecture versions are different, their register sets are similar, and are described together
in this chapter. In the section DP architecture versions summary, the detailed register descriptions always make
clear if the register is implemented for a specific architecture, and if the implementation is DATA LINK DEFINED.

This section summarizes the Debug Port registers, and gives the register maps for the DP architecture versions
DPv0, DPv1, and DP2. It contains the following sub-sections:
• Debug Port (DP) registers summary.
• DP architecture version 0 (DPv0) address map on page 2-41.
• DP architecture version 1 (DPv1) address map on page 2-42.
• DP architecture version 2 (DPv2) address map on page 2-43.

One of the significant differences between the JTAG-DP and the SW-DP is how the registers are accessed. For this
reason, the tables that describe the registers do not include register address information. This information, for each
Debug Port type, is included at the start of the detailed description of each register.

2.2.2 Debug Port (DP) registers summary

Table 2-2 summarizes the DP registers and shows if a register is implemented in a specific DP architecture version.

Table 2-1 Debug Port architecture versions

Version number Description Debug Port Support Notes

DPv0 DP architecture version 0 JTAG-DP JTAG-DP in ADIv5.0

DPv1 DP architecture version 1 SW-DP, JTAG-DP SW-DP in ADIv5.0

DPv2 DP architecture version 2 SW-DP, JTAG-DP SW-DP version 2 in ADIv5.1

Table 2-2 Summary of Debug Port registers

Name
DP architecture version

DPv0 DPv1 DPv2

ABORT Yes Yes Yes

DPIDR No Yes Yes

CTRL/STAT Yes Yes Yes

SELECT Yes Yes Yes

RDBUFF Yes Yes Yes

DLCR No Yes Yes
2-40 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.2 DP architecture versions
2.2.3 DP architecture version 0 (DPv0) address map

DPv0 provides support for JTAG-DP in ADIv5.

The JTAG-DP register accessed depends on both:
• The Instruction Register (IR) value for the DAP access.
• A[3:2] from the address field of the DAP access.

For more information, see Accessing the JTAG-DP registers.

Table 2-3 shows the DPv0 register map. The A[3:2] field of the DPACC scan chain provides bits[3:2] of the address.
Bits[1:0] of the address are always 0b00.

The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED. In JTAG-DP,
this is implemented through the ABORT instruction.

Accessing the JTAG-DP registers

The JTAG-DP registers are only accessed when the Instruction Register (IR) for the DAP access contains the
DPACC or ABORT instruction. The register accesses for each instruction are:

DPACC The DPACC scan chain accesses the DP CTRL/STAT, SELECT, and RDBUFF registers at
addresses 0x0 to 0xC, although register address 0x0 is reserved, and the RDBUFF register at 0xC is
always RAZ/WI on a JTAG-DP.

These registers are shown in the illustration of the JTAG-DP in Figure 1-2 on page 1-26.

ABORT For a write access with address 0x0, the ABORT scan chain accesses the ABORT register.

For a read access with address 0x0, and for any access with address 0x4 to 0xC, the behavior of the
ABORT scan chain is UNPREDICTABLE.

For more information about the JTAG-DP scan chains see Chapter 3 The JTAG Debug Port (JTAG-DP).

RESEND No Yes Yes

TARGETID No No Yes

DLPIDR No No Yes

TARGETSEL No No Yes

Table 2-2 Summary of Debug Port registers (continued)

Name
DP architecture version

DPv0 DPv1 DPv2

Table 2-3 DPv0 register map

Address Name Access

0x0a

a. Reserved, UNPREDICTABLE.

- -

0x4 CTRL/STAT RW

0x8 SELECT RW

0xC RDBUFF R

- Wa
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-41
ID080813 Non-Confidential

2 The Debug Port (DP)
2.2 DP architecture versions
2.2.4 DP architecture version 1 (DPv1) address map

DPv1 extends DPv0, adding support for Serial Wire Debug protocol version 1 and defining the following additional
registers:
• The Debug Port Identification Register, DPIDR.
• The Data Link Control Register, DLCR.
• Additional DATA LINK DEFINED registers.

In addition, the definition of some of the DPv0 registers is changed:
• The behavior of writes to bits [4:1] of the ABORT register is defined.
• The behavior on writing to bits [5:4, 1] of the CTRL/STAT register is DATA LINK DEFINED.
• The SELECT register is write-only.

For most register addresses, different registers are addressed on read and write accesses. In addition, the
SELECT.DPBANKSEL bit determines which register is accessed at address 0x04.

Table 2-4 shows the DPv1 register map.

The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED, and:
• DP register 0 is reserved for the purpose if defined by the data link.
• In JTAG-DP, this is implemented through the ABORT instruction.

Table 2-4 DPv1 register map

Addressa DPBANKSELb Name Access Notes

0x0 x DPIDR RO -

- WO DATA LINK DEFINED, as either:
• ABORT, see ABORT, AP Abort register on page 2-45
• Reserved, UNPREDICTABLE

0x4 0x0 CTRL/STAT RW -

0x1 DLCR RW -

0x2 to 0xF - - UNPREDICTABLE

0x8 x - RO DATA LINK DEFINED

SELECT WO -

0xC x RDBUFF RO -

- WO DATA LINK DEFINED

a. Bits [1:0] of the address are always 0b00.
b. SELECT.DPBANKSEL.
2-42 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.2 DP architecture versions
SW-DP DATA LINK DEFINED registers, DPv1

Table 2-5 shows the DATA LINK DEFINED SW-DP registers for a DPv1 implementation. Bits[1:0] of the address are
always 0b00.

For a DPv1 JTAG-DP, all DATA LINK DEFINED registers are reserved. Accesses to a reserved DATA LINK DEFINED
register are UNPREDICTABLE.

2.2.5 DP architecture version 2 (DPv2) address map

DPv2 extends DPv1, adding support for Serial Wire Debug protocol version 2 and defining the following additional
registers:
• The Target Identifier register, TARGETID.
• The Data Link Protocol Identification Register, DLPIDR.
• The DATA LINK DEFINED Target Selection register, TARGETSEL.
• The EVENT Status register, EVENTSTAT.

For most register addresses, different registers are addressed on read and write accesses. In addition, an extended
SELECT.DPBANKSEL field determines which register is accessed at address 0x04.

Table 2-6 shows the DPv2 register map.

Table 2-5 SW-DP data link defined registers, DPv1

Address Name Access

0x0 ABORT WO

0x8 RESEND RO

0xCa

a. Reserved, SBZ.

- WO

Table 2-6 DPv2 address map

Addressa DPBANKSELb Name Access Notes

0x0 x DPIDR RO -

- WO DATA LINK DEFINED, as either:
• ABORT, see ABORT, AP Abort register on page 2-45
• Reserved, RES0

0x4 0x0 CTRL/STAT RW -

0x1 DLCR RW -

0x2 TARGETID RO -

0x3 DLPIDR RO -

0x4 EVENTSTAT RO -

All other values - - Reserved, RES0

0x8 x - RO DATA LINK DEFINED

SELECT WO -
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-43
ID080813 Non-Confidential

2 The Debug Port (DP)
2.2 DP architecture versions
The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED, and:
• DP register 0 is reserved for the purpose if defined by the data link.
• In JTAG-DP, this is implemented through the ABORT instruction.

SW-DP DATA LINK DEFINED registers, DPv2

Table 2-7 shows the DATA LINK DEFINED SW-DP registers for a DPv2 implementation:

For a DPv2 JTAG-DP, all DATA LINK DEFINED registers are RES0.

2.2.6 Register maps, and accesses to reserved addresses

The register memory maps for the DP and the AP within the DAP are shown in:
• Figure 1-2 on page 1-26, for accesses to JTAG-DP registers.
• Figure 7-1 on page 7-129, for accesses to MEM-AP registers.
• Figure 8-1 on page 8-162, for accesses to JTAG-AP registers.

There are a number of reserved addresses in these register maps. Reserved AP registers are RES0.

0xC x RDBUFF RO -

- WO DATA LINK DEFINED

a. Bits [1:0] of the address are always 0b00.
b. SELECT.DPBANKSEL field.

Table 2-6 DPv2 address map (continued)

Addressa DPBANKSELb Name Access Notes

Table 2-7 SW-DP data link defined registers, DPv2

Addressa

a. Bits [1:0] of the address are always 0b00.

SWD
protocol
version

Name Access For description see:

0x0 x ABORT WO -

0x8 x RESEND RO -

0xC v1 - WO Reserved, SBZ

v2 TARGETSEL WO -
2-44 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
2.3 DP register descriptions
This section gives full descriptions of the DP registers.

The registers are listed in name order.

2.3.1 ABORT, AP Abort register

The AP Abort register attributes are:

Purpose The ABORT register forces an AP transaction abort.

In DPv1 and DPv2 only, the ABORT register has additional fields that clear error and sticky flag
conditions. See Clearing the sticky error and compare flags in the CTRL/STAT register on
page 2-50. In DPv0, these fields are reserved, SBZ.

Configurations

A DP architecture register. The ABORT register is defined and implemented in DPv0, DPv1, and
DPv2.

Attributes The ABORT register is:

• A write-only register.

• Accessed in a DATA LINK DEFINED manner:

JTAG-DP Access is through its own scan-chain. See the JTAG-DP ABORT register.

SW-DP Accessed by a write to offset 0x0 of the DP register map.

• Always accessible, completes all accesses on the first attempt, and returns an OK response if
a valid transaction is received.

The ABORT register bit assignments are:

Bits[31:5] Reserved, SBZ.

ORUNERRCLR, bit[4], DPv1 or higher

Write 1 to this bit to clear the CTRL/STAT.STICKYORUN overrun error bit to 0.

WDERRCLR, bit[3], DPv1 or higher

Write 1 to this bit to clear the CTRL/STAT.WDATAERR write data error bit to 0.

STKERRCLR, bit[2], DPv1 or higher

Write 1 to this bit to clear the CTRL/STAT.STICKYERR sticky error bit to 0.

STKCMPCLR, bit[1], DPv1 or higher

Write 1 to this bit to clear the CTRL/STAT.STICKYCMP sticky compare bit to 0. It is
IMPLEMENTATION DEFINED whether this bit is implemented. See MINDP, Minimal Debug Port
extension on page 2-36.

Bits[4:1]. DPv0

Reserved, SBZ.

Reserved, SBZ

31 5 4 3 2 1 0

ORUNERRCLR
WDERRCLR

STKERRCLR
STKCMPCLR

DAPABORT

DPv1 or higher
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-45
ID080813 Non-Confidential

2 The Debug Port (DP)
2.3 DP register descriptions
DAPABORT, bit[0]

Write 1 to this bit to generate a DAP abort. This aborts the current AP transaction.

In DPv0, this bit is SBO.

Do this only if the debugger has received WAIT responses over an extended period. See DAP
Aborts.

DAP Aborts

Writing 1 to the ABORT.DAPABORT register bit generates a DAP abort, causing the current AP transaction to
abort. This also terminates the transaction counter, if it was active. It is IMPLEMENTATION DEFINED whether the AP
propagates the abort, for example by aborting a transaction in progress.

From a software perspective, this is a fatal operation. It discards any outstanding and pending transactions, and
leaves the AP in an UNPREDICTABLE state. However, on a SW-DP, the sticky error bits are not cleared to 0.

Caution
 Use this function only in extreme cases, when debug host software has observed stalled target hardware for an
extended period. Stalled target hardware is indicated by repeated WAIT responses.

After a DAP abort:

• It is IMPLEMENTATION DEFINED which registers, if any, in the AP that was aborted can be accessed. If the
register cannot be accessed, the DP returns a WAIT response to an AP access to the register. ARM
recommends that any AP register that is not directly related to stalling transaction is accessible, to allow a
debugger to diagnose the cause of the error.

• A DP access or an AP access to any other AP are accepted by the DP. This includes AP accesses to
non-existent APs, which are defined to behave as RAZ/WI.
2-46 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.2 CTRL/STAT, Control/Status register

The CTRL/STAT register attributes are:

Purpose The Control/Status register provides control of the DP and status information about the DP.

Configurations

A DP architecture register. The CTRL/STAT register is defined and implemented in DPv0, DPv1,
and DPv2.

Attributes The CTRL/STAT register is:

• A read/write register, in which some fields are RO, meaning they ignore writes. See the field
descriptions for more information.

• Accessed by a read or write to offset 0x4 of the DP register map, when
SELECT.DPBANKSEL is 0x0.

The CTRL/STAT register bit assignments are:

CSYSPWRUPACK, bit[31]

System powerup acknowledge. Indicates the status of the CSYSPWRUPACK signal. See Power
control requirements and operation on page 2-64.

This bit is RO, meaning it ignores writes.

CSYSPWRUPREQ, bit[30]

System powerup request. This bit controls the CSYSPWRUPREQ signal. See Power control
requirements and operation on page 2-64.

After a powerup reset, this bit is set 0.

CDBGPWRUPACK, bit[29]

Debug powerup acknowledge. Indicates the status of the CDBGPWRUPACK signal. See Power
control requirements and operation on page 2-64.

This bit is RO, meaning it ignores writes.

CDBGPRWUPREQ, bit[28]

Debug powerup request. This bit controls the CDBGPRWUPREQ signal. See Power control
requirements and operation on page 2-64.

After a powerup reset, this bit is set to 0.

CDBGRSTACK, bit[27]

Debug reset acknowledge. Indicates the status of the CDBGRSTACK signal. See Debug reset
control on page 2-66.

This bit is RO, meaning it ignores writes.

31 5 4 3 2 1 0

WDATAERR
READOK

STICKYERR

TRNMODE

30 29 28 27 26 25 24 23 12 11 8 7 6

TRNCNT

CSYSPWRUPACK
CSYSPWRUPREQ
CDBGPWRUPACK
CDBGPWRUPREQ
CDBGRSTACK
CDBGRSTREQ

RES0

MASKLANE

STICKYCMP

STICKYORUN
ORUNDETECT
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-47
ID080813 Non-Confidential

2 The Debug Port (DP)
2.3 DP register descriptions
CDBGRSTREQ, bit[26]

Debug reset request. This bit controls the CDBGRSTREQ signal. See Debug reset control on
page 2-66.

It is IMPLEMENTATION DEFINED whether this bit is RW or RAZ/WI. See Emulation of debug reset
request on page 2-67.

After a powerup reset, this bit is set to 0.

Bits[25:24] Reserved, RES0.

TRNCNT, bits[23:12]

Transaction counter.

See The transaction counter on page 2-38.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal Debug
Port extension on page 2-36.

After a powerup reset, the value of this field is UNKNOWN.

MASKLANE, bits[11:8]

Indicates the bytes to be masked in pushed-compare and pushed-verify operations.

See MASKLANE and the bit masking of the pushed-compare and pushed-verify operations on
page 2-49.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal Debug
Port extension on page 2-36.

After a powerup reset, the value of this field is UNKNOWN.

WDATAERR, bit[7]

This bit is DATA LINK DEFINED:

• On a JTAG-DP this bit is reserved, RES0.

• On an SW-DP. this bit is RO/WI.
This bit is set to 1 if a Write Data Error occurs. This happens if:

— There is a a parity or framing error on the data phase of a write.

— A write that has been accepted by the DP is then discarded without being submitted to
the AP.

For more information, see Protocol errors, SW-DP on page 2-36.
On an SW-DP, this bit is cleared to 0 by writing 1 to the ABORT.WDERRCLR bit.

After a powerup reset, this bit is set to 0.

READOK, bit[6], DPv1 or higher

This bit is DATA LINK DEFINED

• On JTAG-DP, the bit is reserved, RES0.

• On SW-DP, access is RO/WI.
The bit is set to 1 if the response to the previous AP read or RDBUFF read was OK. It is
cleared to 0 if the response was not OK.
This flag always indicates the response to the last AP read access. See Protocol error
response on page 4-97.

After a powerup reset, this bit is set to 0.

STICKYERR, bit[5]

This bit is set to 1 if an error is returned by an AP transaction. See Sticky flags and DP error
responses on page 2-34.

The behavior on writing is DATA LINK DEFINED:
• On a JTAG-DP, access is R/W1C.
2-48 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
• On a SW-DP, access is RO/WI.

The clearing of this bit to 0 is DATA LINK DEFINED, see Clearing the sticky error and compare flags
in the CTRL/STAT register on page 2-50.

After a powerup reset, this bit is set to 0.

STICKYCMP, bit[4]

This bit is set to 1 when a match occurs on a pushed-compare or a pushed-verify operation. See
Pushed-compare and pushed-verify operations on page 2-36.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal Debug
Port extension on page 2-36.

The behavior on writing is DATA LINK DEFINED:
• On a JTAG-DP access is R/W1C.
• On an SW-DP access is RO/WI.

The clearing of this bit to 0 is DATA LINK DEFINED, see Clearing the sticky error and compare flags
in the CTRL/STAT register on page 2-50.

After a powerup reset, this bit is set to 0.

TRNMODE, bits[3:2]

This field sets the transfer mode for AP operations. See TRNMODE, Transfer mode on page 2-50.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal Debug
Port extension on page 2-36.

After a powerup reset, the value of this field is UNKNOWN.

STICKYORUN, bit[1]

If overrun detection is enabled, this bit is set to 1 when an overrun occurs. See bit [0] of this register
for details of enabling overrun detection.

The behavior on writing is DATA LINK DEFINED:
• On a JTAG-DP, access is R/W1C.
• On an SW-DP, access is RO/WI.

The clearing of this bit to 0 is DATA LINK DEFINED, see Clearing the sticky error and compare flags
in the CTRL/STAT register on page 2-50.

After a powerup reset, this bit is set to 0.

ORUNDETECT, bit[0]

This bit is set to 1 to enable overrun detection. For more information see Overrun detection on
page 2-34.

After a powerup reset, this bit is set to 0.

Note
 • TRNCNT, MASKLANE, and TRNMODE are not supported in MINDP configuration. In MINDP

configuration, the effect of writing a value other than zero to either TRNCNT or TRNMODE is
UNPREDICTABLE.

• STICKYCMP is not supported in MINDP configuration. In MINDP configuration, the effect of writing a 1
to STICKYCMP is UNPREDICTABLE.

MASKLANE and the bit masking of the pushed-compare and pushed-verify operations

The MASKLANE field, bits [11:8] of the CTRL/STAT register, is only relevant if the Transfer Mode is set to
pushed-verify or pushed-compare operation. See TRNMODE, Transfer mode on page 2-50.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-49
ID080813 Non-Confidential

2 The Debug Port (DP)
2.3 DP register descriptions
In the pushed operations, the word supplied in an AP write transaction is compared with the current value at the
target AP address. For more information see Pushed-compare and pushed-verify operations on page 2-36. The
MASKLANE field lets you specify that the comparison is made using only certain bytes of the values. Each bit of
the MASKLANE field corresponds to one byte of the AP values. Therefore, each bit is said to control one byte lane
of the compare operation.

Table 2-8 shows how the bits of MASKLANE control the comparison masking.

Note
 A zero in any position excludes the corresponding byte lane from the comparison.

If MASKLANE is set to 0b1111 then the comparison is made on the complete word. In this case the mask is
0xFFFFFFFF.

TRNMODE, Transfer mode

This field sets the transfer mode for AP operations. Table 2-9 lists the permitted values of this field, and their
meanings.

In normal operation, AP transactions are passed to the AP for processing, as described in Using the Access Port to
access debug resources on page 1-27.

In pushed-verify and pushed-compare operations, the DP compares the value supplied in an AP write transaction
with the value held in the target AP address. The AP write transaction generates a read access to the debug memory
system. These operations are described in Pushed-compare and pushed-verify operations on page 2-36.

Clearing the sticky error and compare flags in the CTRL/STAT register

In the CTRL/STAT register, the sticky error flags are:
• STICKYERR, bit[5].
• STICKYCMP, bit[4].

Table 2-8 Control of pushed operation comparisons by MASKLANE

MASKLANEa

a. Bits [11:8] of the CTRL/STAT register.

Meaning Mask used for comparisonsb

b. Bytes of the mask shown as -- are determined by the other bits of MASKLANE.

0b1xxx Include byte lane 3 in comparisons. 0xFF------

0bx1xx Include byte lane 2 in comparisons. 0x--FF----

0bxx1x Include byte lane 1 in comparisons. 0x----FF--

0bxxx1 Include byte lane 0 in comparisons. 0x------FF

Table 2-9 TRNMODE bit definitions

TRNMODEa

a. Bits [3:2] of the CTRL/STAT register.

AP Transfer mode

0b00 Normal operation.

0b01 Pushed-verify operation.

0b10 Pushed-compare operation.

0b11 Reserved.
2-50 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
• STICKYORUN, bit[1].
• WDATAERR, bit[7], SW-DP only.

The descriptions of these bits in CTRL/STAT indicate the condition that sets each bit to 1. When one of these bits
is set to 1, a write of 0 to that bit is ignored. These bits can be cleared to 0 as follows:

JTAG-DP, all implementations

Write 1 to the appropriate bit of the CTRL/STAT register. For example, if the STICKYERR flag, bit
[5], is set to 1 then you must write 1 to bit [5] to clear the flag to 0.

You can use a single write of the CTRL/STAT register to clear multiple flags to 0 if necessary.

SW-DP, all implementations, and JTAG-DP, DPv1 and higher

Write 1 to the appropriate CLR field of the ABORT register:
• To clear STICKYERR to 0, write 1 to the ABORT.STKERRCLR field.
• To clear STICKYCMP to 0, write 1 to the ABORT.STKCMPCLR field.
• To clear STICKYORUN to 0, write 1 to the ABORT.ORUNERRCLR field.
• To clear WDATAERR to 0, write 1 to the ABORT.WDERRCLR field, SW-DP only.

You can use a single write of the ABORT register to clear multiple flags to 0 if necessary.

After clearing the flag to 0, you might have to access the DP and AP registers to find what caused the flag to be set
to 1. Typically:

• For the STICKYERR or STICKYCMP flag, you must find which location was accessed to cause the flag to
be set to 1.

• For the STICKYORUN flag, you must find which DP or AP transaction caused the overrun. You then have
to repeat your transactions from that point.

• For the WDATAERR flag, you must resend the corrupted data.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-51
ID080813 Non-Confidential

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.3 DLCR, Data Link Control Register

The DLCR attributes are:

Purpose Controls the operating mode of the Data Link.

Configurations

A DP architecture register. The DLCR is defined and implemented only in DPv1 and DPv2.

Attributes The DLCR is:

• DATA LINK DEFINED.

• A read/write register.

• Accessed by a read or write to offset 0x4 of the DP address map when
SELECT.DPBANKSEL is set to 0x1.

See the field descriptions for information about the register reset value.

For SW-DP, the DLCR bit assignments are:

Bits[31:10] Reserved, RES0.

TURNROUND, bits[9:8]

Turnaround tristate period. After a powerup or line reset, this field is set to 0b00.

Note
 Support for varying the turnaround tristate period is IMPLEMENTATION DEFINED. An implementation

that does not support variable turnaround must treat writing a value other than 0b00 to the
TURNROUND field as an immediate protocol error.

Bit[7] Reserved, RES0.

Bit[6] Reserved, RES1.

Bits[5:0] Reserved, RES0.

TURNROUND, bits[9:8]

This field defines the turnaround tristate period, see Line turn-round on page 4-90. Table 2-10 shows the permitted
values of this field, and their meanings.

Table 2-10 Turnaround tristate period field, TURNROUND, bit definitions

DLCR.TURNROUND Turnaround tristate period

0b00 1 data perioda.

0b01 2 data periodsa.

0b10 3 data periodsa.

0b11 4 data periodsa.

(1)(0)Reserved, RES0

31 010 9 8 7 6 5

TURNROUND

Reserved, RES0
Reserved
2-52 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.4 DLPIDR, Data Link Protocol Identification Register

The DLPIDR attributes are:

Purpose The DLPIDR provides protocol version information.

Configurations

A DP architecture register. The DLPIDR is defined and implemented only in DPv2.

Attributes The DLPIDR is:
• A read-only register.
• Accessed by a read to offset 0x4 of the DP register map when SELECT.DPBANKSEL is set

to 0x3.

The contents of the DLIPR are DATA LINK DEFINED. For SW-DP, the DLPIDR bit assignments are:

TINSTANCE, bits[31:28]

IMPLEMENTATION DEFINED. Defines an instance number for this device. This value must be unique
for all devices with identical TARGETID[27:0] fields that are connected together in a multi-drop
system.

Bits[27:4] Reserved, UNKNOWN.

PROTVSN, bits[3:0]

Defines the Serial Wire Debug protocol version that is implemented. Valid values for this field are:
0x1 Serial Wire Debug protocol version 2. Adds support for multidrop extensions. See

Chapter 4 The Serial Wire Debug Port (SW-DP).

All other values of this field are reserved.

Note
 A Serial Wire Debug Port that implements DPv2, must implement at least Serial Wire Debug protocol version 2.

For JTAG-DP, the DLPIDR is reserved and accessing the register is UNPREDICTABLE.

a. A data period is the period of a single data bit on the Serial Wire Debug interface.

PROTVSNReserved, RES0

31 28 27 4 3 0

TINSTANCE
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-53
ID080813 Non-Confidential

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.5 DPIDR, Debug Port Identification Register

The DPIDR attributes are:

Purpose The DPIDR provides information about the Debug Port.

Configurations

A DP architecture register. The DPIDR is defined and implemented only in DPv1 and DPv2.

Attributes The DPIDR is:
• A read-only register.
• Accessed by a read to offset 0x0 of the DP register map.

Access to the DPIDR is not affected by the value of SELECT.DPBANKSEL.

The DPIDR bit assignments are:

REVISION, bits[31:28]

Revision code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO, bits[27:20]

Part Number for the Debug Port. This value is provided by the designer of the Debug Port and must
not be changed.

Bits[19:17] Reserved, RES0.

MIN, bit[16] Minimal Debug Port (MINDP) functions implemented:
0 Transaction counter, Pushed-verify, and Pushed-find operations are implemented.
1 Transaction counter, Pushed-verify, and Pushed-find operations are not implemented.

VERSION, bits[15:12]

Version of the Debug Port architecture implemented. Permitted values are:
0x0 Reserved. Implementations of DPv0 do not implement DPIDR.
0x1 DPv1 is implemented.
0x2 DPv2 is implemented.

All remaining values are reserved.

DESIGNER, bits[11:1]

Designer ID. An 11-bit JEDEC code formed from the JEDEC JEP106 continuation code and
identity code. The ID identifies the designer of the Debug Port. The ARM value for this field is
0x23B. Other designers must insert their own JEDEC-assigned code here.

Bit[0] RAO.

Note
 • In DPv0, the DPIDR is reserved and accesses are UNPREDICTABLE.

• In all DP architecture versions, a JTAG-DP implementation must implement the IDCODE instruction and
IDCODE scan-chain. The architecture does not require that the TAP IDCODE register value and the DPIDR
value are the same.

RES0PARTNOREVISION VERSION

Reserved
MIN

1

31 28 27 20 19 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 1 1

(Value shown is the ARM value)
DESIGNER
2-54 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.6 EVENTSTAT, Event Status register

The EVENTSTAT register attributes are:

Purpose The EVENTSTAT register is used by the system to signal an event to the external debugger. The
nature of the event is IMPLEMENTATION DEFINED.

Configurations

A DP architecture register. The EVENTSTAT register is defined and implemented only in DPv2.

Attributes The EVENTSTAT register is:
• A read-only register.
• Accessed by a read to offset 0x4 of the DP register map when SELECT.DPBANKSEL is set

to 0x4.

The EVENTSTAT register bit assignments are:

Bits[31:1] Reserved, RES0.

EA, bit[0] Event status flag. Valid values for this bit are:
0 An event requires attention.
1 There is no event requiring attention.

If no event is implemented, this bit is RAZ.

ARM recommends that the event is either:

• Connected to an output trigger of a CoreSight Cross-Trigger Interface (CTI) with software acknowledge.

• For a uniprocessor system only, connected to an output from a processor that indicates whether the processor
is halted:

— For ARMv6-M and ARMv7-M processors, the recommended HALTED signal.

— For all other ARM architecture processors, the recommended DBGACK signal.

Note
 The status of the event is inverted in the register. This means that implementations that do not implement an event
always indicate that an event requires attention. That is, that the debugger must poll registers elsewhere to detect
the status of the system.

RES0

31 1 0

EA
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-55
ID080813 Non-Confidential

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.7 RDBUFF, Read Buffer register

The RDBUFF register attributes are:

Purpose

The RDBUFF register captures data from the AP, presented as the result of a previous read.

Configurations

A DP architecture register. The RDBUFF register is defined and implemented in DPv0, DPv1, and
DPv2.

Attributes

The RDBUFF register is:

• A 32-bit read-only buffer.

• Accessed by a read of offset 0xC in the DP register map.

• Has DATA LINK DEFINED behavior:

JTAG-DP See Read Buffer implementation and use on a JTAG-DP.

SW-DP See Read Buffer implementation and use on a SW-DP.

Read Buffer implementation and use on a JTAG-DP

On a JTAG-DP, the Read Buffer is always RAZ/WI.

The Read Buffer is architecturally defined to provide a DP read operation that does not have any side effects. This
means that a debugger can insert a DP read of RDBUFF at the end of a sequence of operations, to return the final
AP Read Result and ACK values.

Read Buffer implementation and use on a SW-DP

On a SW-DP, performing a read of the Read Buffer captures data from the AP, presented as the result of a previous
read, without initiating a new AP transaction. This means that reading the Read Buffer returns the result of the last
AP read access, without generating a new AP access.

After you have read the DP Read Buffer, its contents are no longer valid. The result of a second read of the DP Read
Buffer is UNKNOWN.

If you require the value from an AP register read, that read must be followed by one of:
• A second AP register access, with the appropriate AP selected as the current AP.
• A read of the DP Read Buffer.

The second access to either the AP or the DP stalls until the result of the original AP read is available.
2-56 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.8 RESEND, Read Resend register

The RESEND register attributes are:

Purpose

The RESEND register enables the read data to be recovered from a corrupted debugger transfer
without repeating the original AP transfer.

Configurations

A DP architecture register. The RESEND register is defined and implemented only in DPv1 and
DPv2.

Attributes

The RESEND register is:

• A read-only register.

• Accessed by a read of offset 0x8 in the DP register map.

• DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.

SW-DP The register is always implemented.

Note
 ARM recommends that debuggers only access the RESEND register when a failed read has been indicated by the
SW-DP, and at no other time. This is because an implementation is permitted to treat reads of RESEND as a protocol
error if it cannot resend the information.

Performing a read to the RESEND register does not capture new data from the AP, it returns the value that was
returned by the last AP read or DP RDBUFF read.

Reading the RESEND register enables the read data to be recovered from a corrupted SW-DP transfer without
having to re-issue the original read request, or generate a new access to the connected debug memory system.

The RESEND register can be accessed multiple times, it always returns the same value until a new access is made
to an AP register or the DP RDBUFF register.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-57
ID080813 Non-Confidential

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.9 SELECT, AP Select register

The SELECT register attributes are:

Purpose

The SELECT register:
• Selects an Access Port (AP) and the active register banks within that AP.
• Selects the DP address bank.

Configurations

A DP architecture register. The SELECT register is defined and implemented in DPv0, DPv1, and
DPv2.

Attributes

In DPv0, the SELECT register:
• Is a RW register.
• Is accessed by a read or write of the DP register at offset 0x8.

Note
 This specification deprecates reading the SELECT register in a DPv0 implementation.

In DPv1 and DPv2, the SELECT register:
• Is a WO register.
• Is accessed by a write to DP register 0x8.

The SELECT register bit assignments are:

APSEL, bits[31:24]

Selects an AP. If APSEL is set to a non-existent AP then all AP transactions return zero on reads
and are ignored on writes. See Register maps, and accesses to reserved addresses on page 2-44.

After a powerup reset, the value of this field is UNKNOWN.

Note
 Every ARM Debug Interface implementation must include at least one AP.

Bits[23:8] Reserved, RES0.

APBANKSEL, bits[7:4]

Selects the active four-word register bank on the current AP. See Using the Access Port to access
debug resources on page 1-27.

After a powerup reset, the value of this field is UNKNOWN.

DPBANKSEL, bit[3:0]

Debug Port address bank select, see DPBANKSEL on page 2-59.

After a powerup reset, this field is set to 0.

APSEL

31 4 3 0

APBANKSEL

DPBANKSEL

24 23 8 7

Reserved
RES0
2-58 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
DPBANKSEL

The behavior of SELECT.BANKSEL depends on the DP version, as follows:

DPv0 In DPv0 the SELECT.DPBANKSEL field must be written as zero, otherwise accesses to DP
register 0x4 are UNPREDICTABLE.

DPv1 In DPv1 the SELECT.DPBANKSEL field controls which SW-DP register is selected at address 0x4,
and Table 2-11 shows the permitted values of this field.

All other values of SELECT.DPBANKSEL are reserved. If the field is set to a reserved value,
accesses to DP register 0x4 are UNPREDICTABLE.

DPv2 In DPv2 the SELECT.DPBANKSEL field controls which SW-DP register is selected at address 0x4,
and Table 2-12 shows the permitted values of this field.

All other values of SELECT.DPBANKSEL are reserved. If the field is set to a reserved value,
accesses to DP register 0x4 are RES0.

Note
 Previous descriptions of ADIv5 have described DPBANKSEL as a single-bit field called CTRSEL, defined only
for SW-DP. From issue B of this document, DPBANKSEL is redefined. The new definition is
backwards-compatible.

Table 2-11 DPBANKSEL SW-DP register allocation in DPv1

DPBANKSEL DP register at address 0x4

0x0 CTRL/STAT

0x1 DLCR

Table 2-12 DPBANKSEL SW-DP register allocation in DPv2

DPBANKSEL DP register at address 0x4

0x0 CTRL/STAT

0x1 DLCR

0x2 TARGETID

0x3 DLPIDR

0x4 EVENTSTAT
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-59
ID080813 Non-Confidential

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.10 TARGETID, Target Identification register

The TARGETID register attributes are:

Purpose

The TARGETID register provides information about the target when the host is connected to a
single device.

Configurations

A DP architecture register. The TARGETID register is defined and implemented only in DPv2.

Attributes

The TARGETID register is:

• A read-only register.

• Accessed by a read to offset 0x4 of the DP register map when SELECT.DPBANKSEL is set
to 0x2.

The TARGETID register bit assignments are:

TREVISION, bits[31:28]

Target revision.

TPARTNO, bits[27:12]

IMPLEMENTATION DEFINED. The value is assigned by the designer of the part. The value must be
unique to the part.

TDESIGNER, bits[11:1]

IMPLEMENTATION DEFINED. An 11-bit code formed from the JEDEC JEP106 continuation code and
identity code. The ID identifies the designer of the part. Designers must insert their JEDEC-assigned
code here.

Note
 The ARM JEP106 value is not shown for the TDESIGNER field. ARM might design a DP

containing the TARGETID register, but typically, the designer of the part, referenced in the
TPARTNO field, is another designer who creates a part around the licensed ARM IP. If the designer
of the part is ARM, then the value of this field is 0x23B.

Bit[0] RAO.

TDESIGNERTPARTNOTREVISION 1

31 28 27 12 11 1 0
2-60 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.3 DP register descriptions
2.3.11 TARGETSEL, Target Selection register

The TARGETSEL register attributes are:

Purpose

The TARGETSEL register selects the target device in a Serial Wire Debug multi-drop system. See
Target selection.

Configurations

A DP architecture register. The TARGETSEL register is defined and implemented only in DPv2.

Attributes

The TARGETSEL register is:
• A write-only register.
• DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.
SW-DP The register is implemented if SWD protocol version 2 is implemented.

• Accessed by a write to offset 0xC of the DP register map.

Note
 In issue A of this document, this register was called ROUTESEL, and was a reserved write-only register.

The TARGETSEL register bit assignments are:

TINSTANCE, bits[31:28]

IMPLEMENTATION DEFINED. The instance number for this device. See DLPIDR.

TPARTNO, bits[27:12]

IMPLEMENTATION DEFINED. The value assigned by the designer of the part. See TARGETID.

TDESIGNER, bits[11:1]

IMPLEMENTATION DEFINED. The 11-bit code formed from the JEDEC JEP106 continuation code and
identity code. See TARGETID.

Bit[0] SBO.

Target selection

On a write to TARGETSEL immediately following a line reset sequence, the target is selected if both the following
conditions are met:
• Bits [31:28] match bits [31:28] in the DLPIDR.
• Bits [27:0] match bits [27:0] in the TARGETID register.

Writing any other value deselects the target. Debug tools must write 0xFFFFFFFF to deselect all targets. This is an
invalid TARGETID value. All other invalid TARGETID values are reserved.

During the response phase of a write to the TARGETSEL register, the target does not drive the line. See Protocol
errors, SW-DP on page 2-36 for more information.

TDESIGNERTPARTNO 1

31 28 27 12 11 1 0

TINSTANCE
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-61
ID080813 Non-Confidential

2 The Debug Port (DP)
2.4 System and debug power and debug reset control
2.4 System and debug power and debug reset control
This section gives detailed information about system and debug power, and debug reset control.

2.4.1 The DAP power domains model

The DAP model supports multiple power domains. These provide support for debug components that can be
powered down.

Three power domains are modeled:

Always-on power domain

This must be powered up for the debugger to connect to the device.

System power domain

This includes system components.

Debug power domain

This includes all of the debug subsystem.

The system and debug power domains can be subdivided if necessary. However, to define a simple debug interface,
the device must be partitioned into system and debug power domains at the top level. Any finer-grained control is
outside the scope of this model.

In most situations, debuggers power up the complete SoC. However, if a debugger is investigating an energy
management issue, it might want to power up only the debug domain. To achieve this, SoC designers might want
to map the power controller into a bus segment that the DAP can access when only the debug power domain is
powered up.

When using an ARM Debug Interface, for the debug process to work correctly, systems must not remove power
from the DP during a debug session. If power is removed, the DAP controller state is lost. However, the DAP is
designed to permit the rest of the DAP and the system to be powered down and debugged while maintaining power
to the DP.

The DP registers reside in the always-on power domain, on the external interface side of the DP. Therefore, they can
always be driven, enabling powerup requests to be made to a system power controller. The power and reset control
bits are part of the DP CTRL/STAT register. See Debug reset control on page 2-66 for more information about the
reset control bits in this register.

ADIv5 defines two pairs of power control signals:
• CDBGPWRUPREQ and CDBGPWRUPACK.
• CSYSPWRUPREQ and CSYSPWRUPACK.

Table 2-13 summarizes the programmers’ model for the power control signal pairs.

These signals are expected to provide hints to the system power/clock controller. The following sections describe
these signal pairs.

Table 2-13 Debug Port programmers’ model

Signal Programmers’ model

CDBGPWRUPREQ Bit[28] of the CTRL/STAT register

CDBGPWRUPACK Bit[29] of the CTRL/STAT register

CSYSPWRUPREQ Bit[30] of the CTRL/STAT register

CSYSPWRUPACK Bit[31] of the CTRL/STAT register
2-62 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.4 System and debug power and debug reset control
CDBGPWRUPREQ and CDBGPWRUPACK

CDBGPWRUPREQ is the signal from the debug interface to the power controller. This signal requests the system
power controller to fully power up and enable clocks in the debug power domain. CDBGPWRUPACK is the signal
from the power controller to the debug interface. When CDBGPWRUPREQ is asserted, the power controller
powers up the debug power domain and then asserts CDBGPWRUPACK to acknowledge that it has responded to
the request.

Which components are in the debug power domain controlled by CDBGPWRUPREQ is IMPLEMENTATION
DEFINED. This domain might include all debug components in the system, or might be limited, for example to
exclude components that have additional levels of power control. The CDBGPWRUPREQ signal indicates that
the debugger requires the debug resources of these components to be communicative. Communicative means that
the debugger can access at least enough registers of the debug resource for it to determine the state of the resource.
Whether the resource is active is IMPLEMENTATION DEFINED.The power/clock controller must power up and run the
clocks of as many domains as necessary to comply with this request from the debugger for the resources to be
communicative.

The power/clock controller must honor CDBGPWRUPREQ for as long as it is asserted. For example, if a
component in a debug power domain requests to have its clocks stopped, the request must be emulated for
non-debug logic within that power domain. This includes all components with a single shared domain.

If some debug resources of a component are not in the debug power domain, then at least the minimal debug
interface of the component must be powered up. Power can be removed from the remainder of the component if
both the following requirements are met:
• There is some means to save and restore the state of the debug resources.
• The remainder of the component does not require to be powered for the debugger to be able to communicate

with the debug resources.

The means to save and restore these resources might include software means. If the debug resources do lose their
value when power is removed from the remainder of the component, then the debug interface must include means
for the debugger to discover that the programmed values have been lost.

CDBGPWRUPACK is the acknowledge signal for the CDBGPWRUPREQ request signal. CDBGPWRUPACK
must be asserted for as long as CDBGPWRUPREQ is asserted. See Powerup request and acknowledgement timing
on page 2-65.

CSYSPWRUPREQ and CSYSPWRUPACK

CSYSPWRUPREQ is the signal from the debug interface to the power controller. This signal requests the system
power controller to fully power up and enable clocks in the system power domain. CSYSPWRUPACK is the signal
from the power controller to the debug interface. When CSYSPWRUPREQ is asserted, the power controller
powers up the system power domain and then asserts CSYSPWRUPACK to acknowledge that it has responded to
the request.

Which components are in the system power domain controlled by CSYSPWRUPREQ is IMPLEMENTATION
DEFINED. This domain might include all debug components in the system, or might be limited, for example to
exclude components that have additional levels of power control, such as processors that implement independent
Core Powerup Request controls.

The CSYSPWRUPREQ signal indicates that the debugger requires all debug resources of these components to be
active. Active means that the debug resource is capable of performing its debug function. An active resource is also
communicative.

The power/clock controller must honor CSYSPWRUPREQ for as long as it is asserted.

CSYSPWRUPREQ has no effect on debug components controlled by CDBGPWRUPREQ, because those
components have no debug logic in the system power domain. However, for components where some debug
resources are in the system power domain controlled by CSYSPWRUPREQ, the request must be emulated for
non-debug logic within that power domain.

CSYSPWRUPACK is the acknowledge signal for the CSYSPWRUPREQ request signal. CSYSPWRUPACK
must be asserted for as long as CSYSPWRUPREQ is asserted. See Powerup request and acknowledgement timing
on page 2-65.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-63
ID080813 Non-Confidential

2 The Debug Port (DP)
2.4 System and debug power and debug reset control
When CSYSPWRUPREQ is asserted by the debugger, CDBGPWRUPREQ must also be asserted.

2.4.2 Power control requirements and operation

Except where the context clearly indicates otherwise, the following description applies to both:
• System domain powerup, using the CSYSPWRUPREQ and CSYSPWRUPACK signals.
• Debug domain powerup, using the CDBGPWRUPREQ and CDBGPWRUPACK signals.

Therefore, in the description:
• CxxxPWRUPREQ refers to either CSYSPWRUPREQ or CDBGPWRUPREQ.
• CxxxPWRUPACK refers to either CSYSPWRUPACK or CDBGPWRUPACK.

The rules for the operation of powerup requests and acknowledgements are:

• The debugger must not set CTRL/STAT.{CSYSPWRUPREQ, CDBGPWRUPREQ} to {1, 0}. This
combination of requests is UNPREDICTABLE.

• To initiate powerup, CxxxPWRUPREQ must be asserted HIGH by the Debug Port.

— If the corresponding power domain is powered down or in a low-power retention state, the power
controller must power up and restore clocks to the domain when it detects CxxxPWRUPREQ
asserted HIGH. When the domain is powered up, the controller must assert CxxxPWRUPACK
HIGH.

— If the corresponding power domain is already powered up and being clocked when the power
controller detects CxxxPWRUPREQ asserted HIGH, the controller must still respond with
CxxxPWRUPACK HIGH. However, there is no effect on the power domain.

• Tools can only initiate an AP transfer when CDBGPWRUPREQ and CDBGPWRUPACK are asserted
HIGH. If CDBGPWRUPREQ or CDBGPWRUPACK is LOW, any AP transfer generates an immediate
fault response.

• The removal of power to a domain is requested by the Debug Port deasserting CxxxPWRUPREQ, that is,
by the DP taking CxxxPWRUPREQ LOW.

The power controller deasserts CxxxPWRUPACK when it has accepted the request to power down the
domain.

CxxxPWRUPACK being taken LOW by the power controller does not indicate that the domain has been
powered down, it only indicates that the power controller has recognized the request to remove power.

• CxxxPWRUPACK must default to the LOW state, and only go HIGH on receipt of a CxxxPWRUPREQ
request.

• On detecting the deassertion of CxxxPWRUPREQ, indicated by the signal going LOW, the power controller
must gracefully power down the domain, unless removal of power from the domain would affect system
operation. For example, the power controller might maintain power to the domain if it has other requests to
maintain power.

• After powerdown has been requested, by the deassertion of CxxxPWRUPREQ, tools must wait until
CxxxPWRUPACK is LOW before making a new request for powerup. CxxxPWRUPACK going LOW
indicates that the power controller has recognized the original powerdown request.

This requirement ensures that the power control handshaking mechanism is not violated.

Figure 2-2 on page 2-65 shows the timing of the power control signals.

Note
 All AP transactions must be initiated between times T2 and T3 for CDBGPWRUPREQ and CDBGPWRUPACK,
as shown in Figure 2-2 on page 2-65.
2-64 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.4 System and debug power and debug reset control
Figure 2-2 Powerup request and acknowledgement timing

2.4.3 Emulation of powerdown

When CxxxPRWUPREQ from the DAP is asserted HIGH for a domain, if the power controller receives a
conflicting request for the domain from another source it must emulate the powerdown request for the domain. This
applies if the power controller receives, from the other source, either of:
• A powerdown request.
• A request to enter a low-power retention mode, with clocks disabled.

This requirement makes it possible to debug a system where one domain powers up and down dynamically.

During emulation of the powerdown request, the power controller carries out all of the expected power control
handshaking, but does not actually remove power from the domain.

Emulation of powerdown is particularly relevant to application debugging, when the application developer does not
care whether the core domain actually powers up and down because this is controlled at the OS level.

2.4.4 Emulation of power control

Where the system to which a DAP is connected does not support the ADIv5 power control model, the required
signals must be emulated or generated from other signals. The following subsections describe possible cases:
• System without power controller support for the ADIv5 control scheme.
• System power controller does not support separate power domains on page 2-66.

System without power controller support for the ADIv5 control scheme

If the connected system can not support the ADIv5 powerup and powerdown control scheme, then
CxxxPRWUPACK must be connected to CxxxPRWUPREQ. With these connections, whenever the DAP requests
powerup, or removes a powerup request, it receives the appropriate acknowledge immediately. This power control
emulation is shown in Figure 2-3.

Figure 2-3 Emulation of powerup control

T1 T2 T3 T4

CxxxPWRUPREQ

CxxxPWRUPACK

Power state undefined
(Debug recommended off)

Power state undefined
(Debug recommended off)

Normal operation
(Powered up)

Debug Access Port
(DAP)

CSYSPWRUPREQ

CSYSPWRUPACK

CDBGPWRUPREQ

CDBGPWRUPACK
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-65
ID080813 Non-Confidential

2 The Debug Port (DP)
2.4 System and debug power and debug reset control
System power controller does not support separate power domains

If the debug power domain resides within the system power domain, CSYSPWRUPREQ and
CDBGPWRUPREQ can independently request powerup of the debug functions in the debug and system power
domains. Whenever CSYSPWRUPREQ is set to 1, CDBGPWRUPREQ must also be set to 1. Setting bits[30,28]
in the CTRL/STAT register to 0b10 gives UNPREDICTABLE system behavior.

The CxxxPRWUPACK signals must be generated, so that the DAP sees the correct response to asserting a
CxxxPRWUPREQ signal. This is shown in Figure 2-3 on page 2-65.

Figure 2-4 Signal generation for a single system and debug power domain

2.4.5 Debug reset control

The DP CTRL/STAT register provides two bits, bits[27:26], for reset control of the debug domain. The debug
domain controlled by these signals covers the internal DAP and the connection between the DAP and the debug
components, for example the debug bus. The two bits provide a debug reset request, CDBGRSTREQ, and a reset
acknowledge, CDBGRSTACK. The associated signals provide a connection to a system reset controller.

The DP registers are in the always-on power domain on the external interface side of the DP. Therefore, the registers
can be driven at any time, to generate a reset request to the system reset controller.

Figure 2-5 shows the reset request and acknowledge timing.

Figure 2-5 Reset request and acknowledge timing

Note
 The use of AMBA APB signal names in the examples does not indicate a requirement that a debug bus must be
implemented using an AMBA APB.

In Figure 2-5:

1. At time T1, the debugger writes 1 to CTRL/STAT.CDBGRSTREQ. This initiates the reset request.

The debug domain is reset between times T1a and T1b, and the reset is complete by time T2. This operation
resets the AP registers and other AP state.

Note
 There is no reset of the DP registers and DP state. These are only reset by a powerup reset.

Debug Access Port (DAP)

CSYSPWRUPREQ

CSYSPWRUPACK

CDBGPWRUPREQ

CDBGPWRUPACK

System power controller

CDBGPWRUPREQ

CDBGPWRUPACK

T1 T2 T3 T4

CDBGRSTREQ

CDBGRSTACK

PRESETDBGn

T1a T1b
2-66 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

2 The Debug Port (DP)
2.4 System and debug power and debug reset control
2. At time T2, the system reset controller acknowledges that the reset of the debug domain has completed. The
CDBGRSTACK signal sets the CTRL/STAT.CDBGRSTACK bit to 1.

3. At time T3, the debugger checks the DP CTRL/STAT register and finds that the reset has completed.
Therefore, it writes 0 to CTRL/STAT.CDBGRSTREQ. This removes the reset request signal.

4. At time T4, the system reset controller recognizes that CDBGRSTREQ is no longer asserted, and deasserts
CDBGRSTACK.

Caution
 If CDBGRSTREQ is removed before the reset controller asserts CDBGRSTACK the behavior is UNPREDICTABLE.

The AP debug components are also reset on powerup of the debug power domain.

A debug reset request has no effect on devices that are powered down when the request is issued.

Emulation of debug reset request

If the debug reset control is not supported then:
• CTRL/STAT.CDBGRSTACK is RAZ.
• It is IMPLEMENTATION DEFINED whether CTRL/STAT.CDBGRSTREQ is read/write or RAZ/WI.

Note
 ARM recommends tying CDBGRSTACK LOW so that after a timeout the debugger can deduce that debug reset
was not implemented.

Limitations of CDBGRSTREQ and CDBGRSTACK

Debug reset control on page 2-66 shows how these bits can drive the debug reset signal, PRESETDBGn. In an
actual system, there might be other reset signals associated with other debug buses. For example, in an ARM
CoreSight system, ATRESETn resets all registers in the AMBA Trace Bus domain.

Note
 It is IMPLEMENTATION DEFINED which components are reset by CDBGRSTREQ. Figure 2-5 on page 2-66 is an
example only. It is not the case that the only components reset are those which use PRESETDBGn.

Because debug logic might be accessible by the system, an implementation might have corner cases if
CDBGRSTREQ is set at the same time as the system is using the debug logic. For example, the reset might occur
during a transaction, causing a system or software malfunction.

It is IMPLEMENTATION DEFINED whether CDBGRSTREQ can be used when debug power is off.

ARM recommends that CDBGRSTREQ from an AP is ignored by the reset controller if the Device Enable signal
to the AP, DEVICEEN, is LOW.

Caution
 System-level use of debug components must be handled with caution. ARM recommends that such system-level
usage is not combined with a reset system that permits those debug components to be reset without the knowledge
of the system. ARM recommends that debuggers do not use debug reset request other than when absolutely
necessary.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-67
ID080813 Non-Confidential

2 The Debug Port (DP)
2.4 System and debug power and debug reset control
2.4.6 System reset control

The Debug Port does not provide any control bits for requesting a system reset. However, it is common for the
physical interface to the debugger to include an system reset pin, nSRST. This section describes the recommended
behavior for the nSRST pin.

nSRST is an active LOW pin that can be asserted and de-asserted at any point in time, regardless of the current state
of the target system, to return the target system to a known state for booting and for starting a debug session.

During the time that nSRST is asserted:
• The target system must be held in this state.
• The debugger must be able to access the debug domain of the target system.

Limitations of system reset control

The debugger must ensure that there are no system accesses in progress through the DAP before asserting nSRST.
When nSRST is asserted, the debugger can access the debug domain.

The effect of nSRST on the debug domain is IMPLEMENTATION DEFINED.

For example, to safely return the target system to a known state, the debug domain might also require to be reset.
When nSRST is asserted, the entire system must be reset, including the debug domain. However, the debug domain
must be released from reset to allow the debugger access. Only the non-debug domain is held in reset during the
time that nSRST is asserted.

ARM recommends that debuggers set CTRL/STAT.CDBGPWRUPREQ to zero during the time that nSRST is
initially asserted.

Figure 2-6 Example system reset timing

1. At time T1, the debugger writes 0 to CTRL/STAT.CDBGPWRUPREQ.

2. At time T2, the system power controller acknowledges this and CTRL/STAT.CDBGPWRUPACK is cleared
to zero.

3. At time T3, the debugger asserts nSRST. The debug domain and non-debug domain are reset at time T3a.
The debug domain reset is complete by time T4a.

4. At time T4, the debugger writes 1 to CTRL/STAT.CDBGPWRUPREQ.

5. At time T5, the system power controller acknowledges this request and signals the debug domain reset is
complete. CTRL/STAT.CDBGPWRUPACK is set to 1. The debugger can now program the debug domain.

6. At time T6, the debugger releases nSRST. The non-debug domain reset completes at time T6a.

CDBGPWRUPREQ
T1

CDBGPWRUPACK

nSRST

Debug reset

Non-debug reset

T2 T3 T3a T4 T4a T5 T6 T6a
2-68 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 3
The JTAG Debug Port (JTAG-DP)

This chapter describes the implementation of the JTAG Debug Port (JTAG-DP), and in particular, the Debug Test
Access Port (DBGTAP) State Machine (DBGTAPSM) and Scan Chains. It is only relevant to an ARM Debug
Interface implementation that use a JTAG Debug Port. In this case, the JTAG-DP provides the external connection
to the DAP, and all interface accesses are made using the scan chains, driven by the DBGTAPSM.

This chapter contains the following sections:
• The Debug TAP State Machine introduction on page 3-70.
• The scan chain interface on page 3-71.
• IR scan chain and IR instructions on page 3-74.
• DR scan chain and DR registers on page 3-78.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-69
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.1 The Debug TAP State Machine introduction
3.1 The Debug TAP State Machine introduction
The Debug TAP State Machine (DBGTAPSM) controls the operation of a JTAG-DP. In particular, it controls the
scan chain interface that provides the external physical interface to the DAP through the JTAG-DP. It is based
closely on the JTAG TAP State Machine, see IEEE 1149.1-1990 IEEE Standard Test Access Port and Boundary
Scan Architecture. This chapter describes both the DBGTAPSM and its scan chain interface.

Figure 1-2 on page 1-26 shows a DAP with a JTAG-DP, including the basic operation of the scan chain interface.
3-70 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

3 The JTAG Debug Port (JTAG-DP)
3.2 The scan chain interface
3.2 The scan chain interface
When a Debug Access Port (DAP) is implemented with a JTAG-DP, the wire-level interface is through scan chains,
and the DAP comprises:

• A Debug TAP State Machine (DBGTAPSM).

• An Instruction Register (IR) and associated IR scan chain, to control the behavior of the JTAG-DP and the
currently-selected data register.

• A number of Data Registers (DRs) and associated DR scan chains, that interface to:
— The registers in the DAP.
— The debug registers in the device or debug component being accessed through the DAP.

Figure 1-2 on page 1-26 shows how the scan chains provide access to the different levels of the DAP architecture,
and this is summarized in Figure 3-1.

Figure 3-1 Mapping of the JTAG-DP scan chains onto the logical levels of the ARM Debug Interface

3.2.1 Physical connection to the JTAG-DP

The physical connection to the JTAG-DP is closely based on the JTAG model. The connections are listed in
Table 3-1. This table also shows the names of the equivalent signals in a JTAG implementation.

An implementation might also include a return clock signal, RTCK. However, ARM recommends that RTCK is
not implemented on an ARM Debug Interface.

JTAG
Debug Port
(JTAG-DP)

Generic
Access Port

(AP)

AP
Access

Debug Access Port (DAP)

Debug
resources

ARM Debug Interface v5 System being
debugged

Resource-specific
transport

DP Access Debug
Port

Access
Port

Debug
resources

DBGTDI
DBGTDO
DBGTMS

TCK
DBGTRSTn

AP Access

Access result and status

APACC

DPACC
Scan

chains

Resource-specific access

Table 3-1 JTAG-DP signal connections

JTAG-DP signal name JTAG equivalent signal name Direction Required? Description

DBGTDI TDI Input Yes Debug Data In

DBGTDO TDO Output Yes Debug Data Out

TCK TCK Input Yes Debug Clock

DBGTMS TMS Input Yes Debug Mode Select

DBGTRSTn TRST* Input Optional Debug TAP Reset
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-71
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.2 The scan chain interface
Figure 3-2 shows the recommended physical connection to the JTAG-DP:

Figure 3-2 JTAG-DP physical connection

3.2.2 The Debug TAP State Machine (DBGTAPSM)

Figure 3-3 shows the DBGTAPSM.

Figure 3-3 The Debug TAP State Machine (DBGTAPSM)

JTAG
Debug Port
(JTAG-DP)

AP Access
DBGTDI

DBGTDO
DBGTMS

TCK
DBGTRSTn

DBGTMS=1

DBGTMS=0

DBGTMS=1 DBGTMS=1

DBGTMS=1 DBGTMS=0 DBGTMS=1 DBGTMS=0

DBGTMS=1

DBGTMS=1

DBGTMS=0

Run-Test/Idle

Test-Logic-
Reset

Select-
DR-Scan

Select-
IR-Scan

DBGTMS=1

Capture-DR

DBGTMS=0

DBGTMS=0

DBGTMS=0

Capture-IR

DBGTMS=0

Shift-IR

Exit1-IR

DBGTMS=1

Pause-IR

DBGTMS=0

Exit2-IR

DBGTMS=1

Update-IR

DBGTMS=1

DBGTMS=0

Shift-DR

Exit1-DR

DBGTMS=1

Pause-DR

DBGTMS=0

Exit2-DR

DBGTMS=1

Update-DR

DBGTMS=1

DBGTMS=0

DBGTMS=1

DBGTMS=0 DBGTMS=0

DBGTMS=1

DBGTMS=0

Based on IEEE Std 1149.1-1990. Copyright © 2006 IEEE. All rights reserved.

DBGTMS=0

Note that ARM signal names differ from those used in the IEEE diagram.
3-72 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

3 The JTAG Debug Port (JTAG-DP)
3.2 The scan chain interface
3.2.3 Basic operation of the DBGTAPSM

The DBGTDI signal into the DAP is the start of the scan chain, and the DBGTDO signal out of the DAP is the end
of the scan chain.

Referring to the Debug TAP State Machine (DBGTAPSM) shown in Figure 3-3 on page 3-72:

• When the DBGTAPSM goes through the Capture-IR state, 0b0001 is transferred onto the Instruction Register
(IR) scan chain. The IR scan chain is connected between DBGTDI and DBGTDO.

• While the DBGTAPSM is in the Shift-IR state, the IR scan chain advances one bit for each rising edge of
TCK. This means that on the first tick:
— The LSB of the IR scan chain is output on DBGTDO.
— Bit[1] of the IR scan chain is transferred to bit[0].
— Bit[2] of the IR scan chain is transferred to bit[1].
— Similarly, for every other bit n of the IR scan chain, bit[n] of the scan chain is transferred to bit[n-1].
— The value on DBGTDI is transferred to the MSB of the IR scan chain.

• When the DBGTAPSM goes through the Update-IR state, the value scanned into the IR scan chain is
transferred into the Instruction Register.

• When the DBGTAPSM goes through the Capture-DR state, a value is transferred from one of a number of
Data Registers (DRs) onto one of a number of DR scan chains, connected between DBGTDI and DBGTDO.

The value held in the Instruction Register determines which Data Register, and associated DR scan chain, is
selected.

This data is then shifted while the DBGTAPSM is in the Shift-DR state, in the same manner as the IR shift
in the Shift-IR state.

• When the DBGTAPSM goes through the Update-DR state, the value scanned into the DR scan chain is
transferred into the selected Data Register.

• When the DBGTAPSM is in the Run-Test/Idle state, no special actions occur. Debuggers can use this as a
true resting state.

Note
 This is a change from the behavior of previous versions of the ARM Debug Interface based on the IEEE

JTAG standard. From ARM Debug Interface v5 there is no requirement for debuggers to gate TCK to obtain
a true rest state.

The behavior of the IR and DR scan chains is described in more detail in IR scan chain and IR instructions on
page 3-74 and DR scan chain and DR registers on page 3-78.

The DBGTRSTn signal only resets the DBGTAP state machine and Instruction Register. DBGTRSTn
asynchronously takes the DBGTAPSM to the Test-Logic-Reset state. As shown in Figure 3-3 on page 3-72, the
Test-Logic-Reset state can also be entered synchronously from any state by a sequence of five TCK cycles with
DBGTMS HIGH. However, depending on the initial state of the DBGTAPSM, this might take the state machine
through one of the Update states, with the resulting side effects.

Within the DAP:

• The DP registers are only reset on a powerup reset.

• The AP registers are reset on a powerup reset, and also by the Debug Reset Control described in Debug reset
control on page 2-66.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-73
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.3 IR scan chain and IR instructions
3.3 IR scan chain and IR instructions
This section describes the JTAG-DP Instruction Register (IR), accessed through the IR scan chain.

3.3.1 The JTAG-DP Instruction Register (IR)

Purpose Holds the current DAP Controller instruction.

Length 4 bits.

Operating mode

When in Shift-IR state, the shift section of the IR is selected as the serial path between DBGTDI
and DBGTDO. At the Capture-IR state, the binary value 0b0001 is loaded into this shift section. This
is shifted out, least significant bit first, during Shift-IR. As this happens, a new instruction is shifted
in, least significant bit first. At the Update-IR state, the value in the shift section is loaded into the
IR and becomes the current instruction.

In the Test-Logic-Reset state, IDCODE becomes the current instruction.

Order Figure 3-4 shows the operation of the Instruction Register.

Figure 3-4 JTAG-DP Instruction Register operation

This register is mandatory in the IEEE 1149.1 standard.

0b0001

DBGTDI DBGTDOData[3:0]

IR[3:0]

3 0
3-74 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

3 The JTAG Debug Port (JTAG-DP)
3.3 IR scan chain and IR instructions
3.3.2 Required Instruction Register (IR) instructions

The description of the JTAG-DP Instruction Register shows how a 4-bit instruction is transferred into the IR. This
instruction determines the physical Data Register that the JTAG-DP Data Register maps onto, as described in DR
scan chain and DR registers on page 3-78. The standard IR instructions are listed in Table 3-2, and recommended
IMPLEMENTATION DEFINED extensions to this instruction set are described in IMPLEMENTATION DEFINED
extensions to the IR instruction set on page 3-76.

Unused IR instruction values are reserved and select the BYPASS register.

Table 3-2 Standard IR instructions

IR instruction
value

Data
register

DR scan
length Notes

0b0xxx - - IMPLEMENTATION DEFINED extensions to the IR instruction set on page 3-76

0b1000 ABORT 35 -

0b1001 - - Reserved

0b1010 DPACC 35 See DPACC and APACC, the JTAG-DP DPAccess register and AP Access
register on page 3-81

0b1011 APACC 35

0b110x - - Reserved

0b1110 IDCODE 32 -

0b1111 BYPASS 1 -
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-75
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.3 IR scan chain and IR instructions
3.3.3 IMPLEMENTATION DEFINED extensions to the IR instruction set

The eight IR instructions 0b0000 to 0b0111 are reserved for IMPLEMENTATION DEFINED extensions to the DAP.

These instructions can be used for accessing a boundary scan register, for IEEE 1149.1 compliance. The instructions
required to do this are listed in Table 3-3. All these instructions select the boundary scan data register.

Note
 This extension describes only the boundary scan instructions described by IEEE 1149.1-1990 and IEEE
1149.1-2001. Other editions of IEEE 1149.1 might define additional instructions. The extension only supports up
to eight additional instructions.

ARM recommends that:
• Separate JTAG TAPs are used for boundary scan and debug.
• The instructions listed in Table 3-3 are not implemented.

If the IR register is set to an IR instruction value that is not implemented, or reserved, then the BYPASS register is
selected.

If you require a boundary scan implementation, you must implement the instructions that are required by
IEEE 1149.1. The other IR instruction values listed in Table 3-3 are reserved encodings that must be used if that
function is implemented in the boundary scan. If implemented, these instructions must behave as required by the
IEEE 1149.1 specification. If not implemented, they select the BYPASS register.

Note
 EXTEST instruction The original revision of the IEEE 1149.1 specification, 1149.1-1990, requires that

instruction 0b0000 is EXTEST. However, in more recent editions this requirement is
removed and the specification recommends that instruction 0b0000 is reserved. See the IEEE
specification for more details.

The IEEE 1149.1 specification also defines the IDCODE and BYPASS instructions. These are included in Table 3-2
on page 3-75.

The CLAMPZ instruction

CLAMPZ is not an IEEE 1149.1 instruction.

Table 3-3 Recommended IMPLEMENTATION DEFINED IR instructions for IEEE 1149.1-compliance

IR instruction value Instruction Required by IEEE 1149.1?

0b0000 EXTEST See note in main text.

0b0001 SAMPLE Yes

0b0010 PRELOAD Yes

0b0011 Reserved -

0b0100 INTESTa

a. Reserved, if the instruction is not implemented.

No

0b0101 CLAMPa No

0b0110 HIGHZa No

0b0111 CLAMPZa No. See The CLAMPZ instruction.
3-76 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

3 The JTAG Debug Port (JTAG-DP)
3.3 IR scan chain and IR instructions
If implemented, when the CLAMPZ instruction is selected all the 3-state outputs are placed in their inactive state,
but the data supplied to the outputs is derived from the scan cells.

CLAMPZ can be implemented to ensure that, during production test, each output can be disabled when its value is
0 or 1. This encoding must be used for CLAMPZ if this function is required.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-77
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
3.4 DR scan chain and DR registers
The physical DR registers are:
• The BYPASS and IDCODE registers, as defined by the IEEE 1149.1 standard.
• The DPACC and APACC Access registers, xPACC.
• An ABORT register, to abort a transaction.

There is a scan chain associated with each of these registers. As described in IR scan chain and IR instructions on
page 3-74, the value in the IR register determines which of these scan chains is connected to the DBGTDI and
DBGTDO signals.

3.4.1 BYPASS, the JTAG-DP Bypass register

Purpose Bypasses the device, by providing a direct path between DBGTDI and DBGTDO.

Length 1 bit.

Operating mode

When the BYPASS instruction is the current instruction in the IR:

• In the Shift-DR state, data is transferred from DBGTDI to DBGTDO with a delay of one
TCK cycle.

• In the Capture-DR state, a logic 0 is loaded into this register.

• Nothing happens at the Update-DR state. The shifted-in data is ignored.

Order Figure 3-5 shows the operation of the Bypass register.

Figure 3-5 JTAG-DP Bypass register operation

This register is mandatory in the IEEE 1149.1 standard.

0b0

DBGTDI DBGTDOBypass
3-78 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
3.4.2 IDCODE, the JTAG TAP ID register

Purpose JTAG-DP TAP identification. The IDCODE value enables a debugger to identify the Debug Port to
which it is connected. JTAG-DP implementations have different IDCODE values, so that a
debugger can distinguish between them.

Length 32 bits.

Operating mode

When the IDCODE instruction is the current instruction in the IR, the shift section of the Device ID
Code register is selected as the serial path between DBGTDI and DBGTDO:

• In the Capture-DR state, the 32-bit device ID code is loaded into this shift section.

• In the Shift-DR state, this data is shifted out, least significant bit first.

• Nothing happens at the Update-DR state. The shifted-in data is ignored.

Order Figure 3-6 shows the operation of the JTAG TAP ID Register.

Figure 3-6 JTAG TAP ID Register operation

In more detail, the IDCODE bit assignments are:

VERSION, bits[31:28]

Version code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO. bits[27:12]

Part Number for the DP TAP. This value is provided by the designer of the Debug Port TAP and
must not be changed.

DESIGNER, bits[11:1]

Designer ID. An 11-bit JEDEC code formed from the JEDEC JEP106 continuation code and
identity code. The ID identifies the designer of the JTAG-DP TAP. See The JEDEC Designer ID on
page 3-80.

The ARM default value for this field is 0x23B. Other designers must insert their own JEDEC
assigned code here.

Bit[0] RAO.

Data[31:0]

1Version

31 28 27 12 11 1 0

Part number Manufacturer ID

DBGTDI DBGTDO

1Version

31 28 27 12 11 1 0

PARTNO
Part number defined by manufacturer 0 1 0 0 0 1 1 1 0 1 1

DESIGNER
(Value shown is the ARM default value)
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-79
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
The JEDEC Designer ID

This field is bits [11:1] of the Identification Code Register. The JEDEC Designer ID is also described as the JEP106
manufacturer identification code, and can be subdivided into two fields, as shown in Table 3-4.

JEDEC codes are assigned by the JEDEC Solid State Technology Association, see JEP106, Standard
Manufacturer’s Identification Code.

Normally, this field identifies the designer of the ADIv5 implementation, rather than the system architect or the
device manufacturer. However, if the DAP is used for boundary scan then the field must be set to the JEDEC
Manufacturer ID assigned to the manufacturer of the device.

Table 3-4 JEDEC JEP106 manufacturer ID code, with ARM values

JEP106 field Bitsa

a. Field width in bits, and the corresponding bits in the IDCODE register.

ARM registered value

Continuation code 4-bits, [11:8] 0b0100 (0x4)

Identity code 7-bits, [7:1] 0b0111011 (0x3B)
3-80 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
3.4.3 DPACC and APACC, the JTAG-DP DP Access register and AP Access register

The DPACC and APACC scan chains have the same format.

Purpose Initiate a DP or AP access, to access a DP or AP register. The DPACC and APACC are used for read
and write accesses to registers.

The DPACC scan chain accesses the DP registers, other than ABORT. For addressing information,
see:
• DP architecture version 0 (DPv0) address map on page 2-41.
• DP architecture version 1 (DPv1) address map on page 2-42.
• DP architecture version 2 (DPv2) address map on page 2-43.

The APACC scan chain accesses registers in the currently-selected AP register bank, see:
• MEM-AP register summary on page 7-146 for details of accessing MEM-AP registers.
• JTAG-AP register summary on page 8-176 for details of accessing JTAG-AP registers.

Length 35 bits.

Operating mode

When the DPACC or APACC instruction is the current instruction in the IR, the shift section of the
DP Access register or AP Access register is selected as the serial path between DBGTDI and
DBGTDO:

• In the Capture-DR state, the result of the previous transaction, if any, is returned, together
with a 3-bit ACK response. Two ACK responses are implemented, and these are summarized
in Table 3-5.

All other ACK encodings are reserved.

• In the Shift-DR state, this data is shifted out, least significant bit first. As shown in Figure 3-7,
the first three bits of data shifted out are ACK[2:0].
As the returned data is shifted out to DBGTDO, new data is shifted in from DBGTDI. This
is described in The OK/FAULT response to a DPACC or APACC access on page 3-82.

• Operation in the Update-DR depends on whether the ACK[2:0] response was OK/FAULT or
WAIT. The two cases are described in:
— Update-DR operation following an OK/FAULT response on page 3-82.
— Update-DR operation following a WAIT response on page 3-83.

Order Figure 3-7 shows the operation of the DP and AP Access Registers.

Figure 3-7 Operation of JTAG-DP DP Access register and AP Access register

Table 3-5 DPACC and APACC ACK responses

Response ACK[2:0] encoding See:

OK/FAULT 0b010 The OK/FAULT response to a DPACC or APACC access on page 3-82

WAIT 0b001 The WAIT response to a DPACC or APACC access on page 3-83

Data[2:1]

ACK[2:0]

Data[34:3]

1 0

ReadResult[31:0]

DBGTDO

3 2

A[3:2] RnWDATAIN[31:0]

Data[0]

DBGTDI

34
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-81
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
The OK/FAULT response to a DPACC or APACC access

If the response indicated by ACK[2:0] is OK/FAULT, the previous transaction has completed. The response code
does not show whether the transaction completed successfully or was faulted. You must read the CTRL/STAT
register to find whether the transaction was successful:

• If the previous instruction in the IR was not one of DPACC, APACC or BYPASS, then the captured
ReadResult[31:0] is UNKNOWN, and if Data[34:3] is shifted out it must be discarded.

• If the previous transaction was a read that completed successfully, then the captured ReadResult[31:0] is the
requested register value. This result is shifted out as Data[34:3].

• If the previous transaction was a write, or a read that did not complete successfully, then the captured
ReadResult[31:0] is UNKNOWN, and if Data[34:3] is shifted out it must be discarded.

Update-DR operation following an OK/FAULT response

The values shifted into the scan chain form a request to read or write a register:

• If the current IR instruction is DPACC then DBGTDI and DBGTDO connect to the DPACC scan chain, and
the request is to read or write a DP register.

• If the current IR instruction is APACC then DBGTDI and DBGTDO connect to the APACC scan chain, and
the request is to read or write an AP register.

In either case:

• If RnW is shifted in as 0, the request is to write the value in DATAIN[31:0] to the addressed register.

• If RnW is shifted in as 1, the request is to read the value of the addressed register. The value in DATAIN[31:0]
is ignored. You must read the scan chain again to obtain the value read from the register.

The required register is addressed:

• In the case of a DPACC access to read a DP register, by the value shifted into A[3:2]. For addressing
information, see:
— DP architecture version 0 (DPv0) address map on page 2-41.
— DP architecture version 1 (DPv1) address map on page 2-42.
— DP architecture version 2 (DPv2) address map on page 2-43.

• In the case of an APACC access to read an AP register, by the combination of:
— The value shifted into A[3:2].
— The current value of the SELECT register in the DP.

For addressing information, see:
— MEM-AP register summary on page 7-146, for accesses to MEM-AP registers.
— JTAG-AP register summary on page 8-176, for accesses to JTAG-AP registers.

Register accesses can be pipelined, because a single DPACC or APACC scan can return the result of the previous
read operation at the same time as shifting in a request for another register access. At the end of a sequence of
pipelined register reads, you can read the DP RDBUFF register to shift out the result of the final register read.

Reading the DP RDBUFF register is benign. That is, it has no effect on the operation of the DBGTAPSM. The
section Target response summary on page 3-84 gives more information about how one DPACC or APACC scan
returns the result from the previous scan.

If the current IR instruction is APACC, causing an APACC access:

• If any sticky flag is set to 1 in the DP CTRL/STAT register, the transaction is discarded. The next scan returns
an OK/FAULT response. For more information see Sticky flags and DP error responses on page 2-34.
3-82 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
• If pushed-compare or pushed-verify operations are enabled then the scanned-in value of RnW must be 0,
otherwise behavior is UNPREDICTABLE. On Update-DR, a read request is issued, and the returned value
compared against DATAIN[31:0]. The CTRL/STAT.STICKYCMP flag is updated based on this comparison.
For more information see Pushed-compare and pushed-verify operations on page 2-36.

Pushed operations are enabled using the CTRL/STAT.TRNMODE field.

• The AP access does not complete until the AP signals it as completed. For example, if you access a Memory
Access Port (MEM-AP), the AP access might cause an access to a memory system connected to the
MEM-AP. In this case the AP access does not complete until the memory system signals to the MEM-AP that
the memory access has completed.

The WAIT response to a DPACC or APACC access

A WAIT response indicates that the previous transaction has not completed. Normally, after receiving a WAIT
response the host retries the DPACC or APACC access.

Note
 The previous transaction might be either a DP or an AP access. Accesses to the DP are stalled, by returning WAIT,
until any previous AP transaction has completed.

Normally, if software detects a WAIT response, it retries the same transfer. This enables the protocol to process data
as quickly as possible. However, if the software has retried a transfer a number of times, and has waited long enough
for a slow interconnect and memory system to respond, it might write to the ABORT register to cancel the operation.
This signals to the active AP that it must terminate the transfer it is currently attempting, to permit access to other
parts of the debug system. An AP might not be able to terminate a transfer on its SoC interface. However, on
receiving an ABORT, the AP must free its interface to the DP.

Update-DR operation following a WAIT response

No request is generated at the Update-DR state, and the shifted-in data is discarded. The captured value of
ReadResult[31:0] is UNKNOWN.

Sticky overrun behavior on DPACC and APACC accesses

At the Capture-DR state, if the previous transaction has not completed a WAIT response is generated. When this
happens, if the Overrun Detect flag, CTRL/STAT.ORUNDETECT is set to 1, the Sticky Overrun flag,
CTRL/STAT.STICKYORUN, is set to 1.

As long as the previous transaction remains not completed, subsequent scans also receive a WAIT response.

When the previous transaction has completed, any additional APACC transactions are abandoned and scans respond
with an OK/FAULT response. However, DP registers can be accessed. In particular, the CTRL/STAT register can
be accessed, to confirm that the Sticky Overrun flag is set to 1, and to clear the flag to 0 after gathering any required
information about the overrun condition. See Overrun detection on page 2-34 for more information.

Minimum response times

As explained in The OK/FAULT response to a DPACC or APACC access on page 3-82, a DP or AP register access
is initiated at the Update-DR state of one DPACC or APACC access, and the result of the access is returned at the
Capture-DR state of the following DPACC or APACC access. However, the second access generates a WAIT
response if the requested register access has not completed.

The DBGTAPSM clock, TCK, is asynchronous to the internal clock of the system being debugged, and the time
required for an access to complete includes clock cycles in both domains. However, the timing between the
Update-DR state and the Capture-DR state only includes TCK cycles. Referring to Figure 3-3 on page 3-72, there
are two paths from the Update-DR state, where the register access is initiated, to the Capture-DR state, where the
response is captured:
• A direct path through Select-DR-Scan.
• A path through Run-Test/Idle and Select-DR-Scan.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-83
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
If the second path is followed, the state machine can spend any number of TCK cycles spinning in the Run-Test/Idle
state. This means it is possible to vary the number of TCK cycles between the Update-DR and Capture-DR states.

A JTAG-DP implementation might impose an IMPLEMENTATION DEFINED lower limit on the number of TCK cycles
between the Update-DR and Capture-DR states, and always generate an immediate WAIT response if Capture-DR
is entered before this limit has expired. Although any debugger must be able to recover successfully from any WAIT
response, ARM recommends that debuggers must be able to adapt to any IMPLEMENTATION DEFINED limit.

In addition, when accessing AP registers, or accessing a connected device through an AP, there might be other
variable response delays in the system. A debugger that can adapt to these delays, avoiding wasted WAIT scans,
operates more efficiently and provides higher maximum data throughput.

Target response summary

As described in The OK/FAULT response to a DPACC or APACC access on page 3-82, a DP or AP register access
is initiated at the Update-DR state of one DPACC or APACC access, and the result of the access is returned at the
Capture-DR state of the following DPACC or APACC access. The target responses, at the Capture-DR state, for
every possible DPACC and APACC access in the previous scan, are summarized in:
• Table 3-6, for cases where the previous scan was a DPACC access.
• Table 3-7 on page 3-85, for cases where the previous scan was an APACC access.

Note
 The target responses shown in Table 3-6 are independent of the operation being performed in the current DPACC
or APACC scan. In this table, Read result is the data shifted out as Data[34:3], and ACK is decoded from the data
shifted out as Data[2:0].

Table 3-6 JTAG-DP target response summary, when previous scana was a DPACC access

Previous scana, at Update-DR
state Current scan, at Capture-DR state

Notes

Access A[3:2]b Sticky?c AP stated Read result ACK

X 0bXX X Busy UNKNOWN WAIT Might cause Sticky Overrun flag to be set to 1.e

R 0b00 X Not Busy UNKNOWN OK/ FAULT Returns UNKNOWN value.

0b01 CTRL/STAT Returns CTRL/STAT value.

0b10 SELECT Returns SELECT value.

0b11 0x00000000 Returns RDBUFF value, always zero.

W 0b00 X Not Busy UNKNOWN OK/ FAULT Behavior UNPREDICTABLE.

0b01 Value has been written to CTRL/STAT.

0b10 Value has been written to SELECT.

0b11 Writes to RDBUFF always ignored.

a. The previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK/FAULT. Updates made following a
WAIT response are discarded.

b. A[3:2] in the DPACC access.
c. The Sticky? column indicates whether any Sticky flag was set to 1 in the DP CTRL/STAT register.
d. The state of the AP when the current scan reaches the Capture-DR state, or the response from the AP at that time.
e. If the Overrun Detect flag is set to 1 then this access and response sequence causes the CTRL/STAT.Sticky Overrun bit to be set to 1.
3-84 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
Host response summary

The ACK column, for the Current scan, at Capture-DR state section of Table 3-6 on page 3-84 and Table 3-7, shows
the responses the host might receive after initiating a DPACC or APACC access. Table 3-8 indicates the normal
action of a host in response to each of these ACKs.

Table 3-7 JTAG-DP target response summary, when previous scana was an APACC access

Previous scana, at Update-DR
state Current scan, at Capture-DR state

Notes

Access A[3:2]b Sticky?c AP stated Read result ACK

X 0bXX X Busy UNKNOWN WAIT Might cause Sticky Overrun flag to be set to 1.e

R 0bXX No Ready See Notes OK/ FAULT See footnotef.

Error UNKNOWN Sticky Error flag is set to 1.

W 0bXX No Ready UNKNOWN OK/ FAULT See footnoteg.

Error UNKNOWN Sticky Error flag is set to 1.

X 0bXX Yes X UNKNOWN OK/ FAULT Previous transaction was discarded.

a. The previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK/FAULT. Updates made following a
WAIT response are discarded.

b. A[3:2] in the APACC access.
c. The Sticky? column indicates whether any Sticky flag was set to 1 in the DP CTRL/STAT register.
d. The state of the AP when the current scan reaches the Capture-DR state, or the response from the AP at that time.
e. If the Overrun Detect flag is set to 1 then this access and response sequence causes the Sticky Overrun flag to be set to 1. See CTRL/STAT,

Control/Status register on page 2-47.
f. If pushed-verify or pushed-compare is implemented and enabled, the behavior is UNPREDICTABLE. Otherwise, returns the value of the AP

register addressed on the previous scan.
g. If pushed-verify or pushed-compare is implemented and enabled, the previous transaction performed the required pushed operation, that

might have set the Sticky Compare flag to 1, see Pushed-compare and pushed-verify operations on page 2-36. Otherwise, the data captured
at the previous scan has been written to the AP register requested.

Table 3-8 Summary of JTAG-DP host responses

Access
type

ACK
from target Suggested host action in response to ACK

Read OK/FAULT Capture read data.

Write OK/FAULT No action required.

Read or Write WAIT Repeat the same access until either an OK/FAULT ACK is received or the wait timeout is reached.
If necessary, use the AP Abort register to enable access to the AP.

Read or Write Invalid ACK Assume a target or line error has occurred and treat as a fatal error.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 3-85
ID080813 Non-Confidential

3 The JTAG Debug Port (JTAG-DP)
3.4 DR scan chain and DR registers
3.4.4 ABORT, the JTAG-DP Abort register

Purpose Access the AP Abort register in the DP, to force an AP abort.

This is the JTAG-DP implementation of the AP ABORT register.

Length 35 bits.

Operating mode

When the ABORT instruction is the current instruction in the IR, the serial path between DBGTDI
and DBGTDO is connected to a 35-bit scan chain that accesses the AP Abort register.

In DPv0, the effect of writing a value other than 0x00000001 to the ABORT scan chain is
UNPREDICTABLE. For more information, see the AP ABORT register. This means that, in DPv0, the
debugger must scan the value 0x000000008 into this scan chain.

Order Figure 3-8 shows the operation of the ABORT scan chain.

Figure 3-8 JTAG-DP ABORT scan chain operation

0 0 0DBGTDI DBGTDO

ABORT[31:0]

RnW
A[3:2]AP Abort Register

1 0

UNKNOWN

4 3 234
3-86 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 4
The Serial Wire Debug Port (SW-DP)

This chapter describes the implementation of the Serial Wire Debug Port (SW-DP), including the Serial Wire Debug
interface. It is only relevant if your ARM Debug Interface implementation uses a SW-DP. In this case, the SW-DP
provides the external connection to the Debug Interface, and all interface accesses are made using the Serial Wire
Debug protocol summarized in this chapter.

This chapter contains the following sections:
• Introduction to the Serial Wire Debug Port on page 4-88.
• Introduction to the ARM Serial Wire Debug (SWD) protocol on page 4-89.
• Serial Wire Debug protocol operation on page 4-93.
• Serial Wire Debug interface on page 4-104.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-87
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.1 Introduction to the Serial Wire Debug Port
4.1 Introduction to the Serial Wire Debug Port
This chapter gives an architectural description of the ARM Serial Wire Debug Port (SW-DP), and in particular, the
Serial Wire Debug interface that provides the physical connection to an ARM Debug Interface. It describes:
• The Serial Wire Debug (SWD) protocol.
• How this protocol provides access to the DP registers.
• How the SW-DP provides Access Port ACCesses (APACCs).

The ARM Serial Wire Debug interface is a synchronous serial interface. This chapter does not describe the physical
characteristics of the SWD interface, such as signal timings.

Note
 Contact ARM if you require more detailed information about the implementation of the ARM Serial Wire Debug
interface.
4-88 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.2 Introduction to the ARM Serial Wire Debug (SWD) protocol
4.2 Introduction to the ARM Serial Wire Debug (SWD) protocol
The ARM Serial Wire Debug interface uses a single bidirectional data connection and a separate clock to transfer
data synchronously.

An operation on the wire consists of two or three phases:

Packet request

The external host debugger issues a request to the DP. The DP is the target of the request.

Acknowledge response

The target sends an acknowledge response to the host.

Data transfer phase

This phase is only present when either:

• A data read or data write request is followed by a valid (OK) acknowledge response.

• The CTRL/STAT.ORUNDETECT flag is set to 1.

The data transfer is one of:
• Target to host, following a read request (RDATA).
• Host to target, following a write request (WDATA).

Note
 If the CTRL/STAT.ORUNDETECT bit is set to 1, then a data transfer phase is required on all

responses, including WAIT and FAULT. For more information, see Sticky overrun behavior on
page 4-98.

When the SW-DP receives a packet request from the debug host, it must respond immediately with the acknowledge
phase. There is a turnaround period between these phases, as they are in different directions. If a data phase is
required, this follows immediately after the acknowledge phase.

For a write request, there is a turnaround period between the acknowledge phase and the WDATA data transfer
phase. Following the WDATA data transfer phase the host continues to drive the wire. There is no additional
turnaround period.

For a read request, there is no turnaround period between the acknowledge phase and the data transfer phase. There
is a turnaround period following the RDATA data transfer phase, following which the host drives the wire.

To ensure that the transfer can be clocked through the SW-DP, after the data transfer phase the host must do one of
the following:

• Immediately start a new SWD operation with the start bit of a new packet request.

• Continue to drive the SWD interface with idle cycles until the host starts a new SWD operation.

• If the host is driving the Serial Wire Debug clock, continue to clock the SWD interface with at least eight idle
cycles. After this it can stop the clock.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-89
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.2 Introduction to the ARM Serial Wire Debug (SWD) protocol
4.2.1 SWD protocol versions

Serial Wire Debug protocol version 1 is a point-to-point architecture, supporting connection between a single host
and a single device. It permits connection to multiple devices by providing additional connections from the host.
This has a number of disadvantages:

• It complicates the physical connection standard, by having variants with different numbers of connections.

• It increases the number of pins required for the connector on the device PCB. This is unacceptable where size
is a limiting factor.

• It increases the number of pins required on a package with multiple dies inside.

• It makes it difficult to integrate multiple platforms accessed by the Serial Wire Debug protocol into the same
chip.

Techniques to solve this require connections that are shared between multiple Serial Wire devices. This is
detrimental to the maximum speed of operation, but in many situations this is an acceptable trade-off.

Serial Wire Debug protocol version 2 is a multi-drop architecture that:

• Enables a two-wire host connection to communicate simultaneously with multiple devices.

• Permits an effectively unlimited number of devices to be connected simultaneously, subject to electrical
constraints.

• Is largely backwards-compatible, because provision for multi-drop support in a device does not break
point-to-point compatibility with existing host equipment that does not support the multi-drop extensions.
For more information, see Limits on backwards compatibility of SWD protocol version 2.

• Permits a device to power down completely, during the time that the device is not selected.

• Prevents multiple devices from driving the wire simultaneously, and continues to support the wire being
actively driven both HIGH and LOW, maintaining a high maximum clock speed.

• Permits multi-drop connections incorporating devices that do not implement the Serial Wire Debug protocol.

Limits on backwards compatibility of SWD protocol version 2

SWD protocol version 2 requires implementation of dormant mode, which can limit its compatibility with SWD
version 1:

• For an SWJ-DP implementation, JTAG is selected on a powerup reset. Selecting SWD bypasses dormant
state, and therefore operation is compatible with SWD protocol version 1.

• For an SW-DP implementation of SWD protocol version 2, dormant state is selected on a powerup reset,
meaning the start-up state differs from that with SWD protocol version 1. If SWD operation is then selected,
operation becomes compatible with SWD protocol version 1.

4.2.2 Line turn-round

To prevent contention, a turnaround period is required when the device driving the wire changes. For the turnaround
period, neither the host nor the target drives the wire, and the state of the wire is undefined. See also Line pull-up
on page 4-104.

Note
 The line turn-round period can provide for pad delays when using a high sample clock frequency.

The length of the turnaround period is controlled by DLCR.TURNROUND. The default setting is a turnaround
period of one clock cycle.
4-90 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.2 Introduction to the ARM Serial Wire Debug (SWD) protocol
4.2.3 Idle cycles

After completing a transaction, the host must either insert idle cycles or continue immediately with the start bit of
a new transaction.

The host clocks the Serial Wire Debug interface with the line LOW to insert idle cycles.

4.2.4 Bit order

All data values in SWD operations are transferred LSB first.

For example, the OK response of 0b001 appears on the wire as 1, followed by 0, followed by 0, as shown in
Figure 4-1 on page 4-94 and Figure 4-2 on page 4-95.

4.2.5 Parity

A simple parity check is applied to all packet request and data transfer phases. Even parity is used:

Packet requests

The parity check is made over the APnDP, RnW and A[2:3] bits. If, of these four bits:
• The number of bits set to 1 is odd, then the parity bit is set to 1.
• The number of bits set to 1 is even, then the parity bit is set to 0.

Data transfers (WDATA and RDATA)

The parity check is made over the 32 data bits, WDATA[0:31] or RDATA[0:31]. If, of these 32 bits:
• The number of bits set to 1 is odd, then the parity bit is set to 1.
• The number of bits set to 1 is even, then the parity bit is set to 0.

The packet request parity bit is shown in each of the diagrams in this section, from Figure 4-1 on page 4-94 to
Figure 4-7 on page 4-99. It appears on the wire immediately after the A[2:3] bits. A parity error in the packet request
is detected by the SW-DP, which responds with a protocol error. See Protocol error response on page 4-97.

The WDATA parity bit is shown in Figure 4-1 on page 4-94 and in Figure 4-7 on page 4-99. It appears on the wire
immediately after the WDATA[31] bit. A parity error in the WDATA data transfer phase is detected by the SW-DP
and, other than writes to TARGETSEL, recorded in CTRL/STAT.WDATAERR. If overrun detection is enabled,
CTRL/STAT.STICKYORUN is set to 1. A parity error in a write to TARGETSEL deselects the target.

The RDATA parity bit is shown in Figure 4-2 on page 4-95. It appears on the wire immediately after the RDATA[31]
bit. The debugger must check for parity errors in the RDATA data transfer phase and retry the read if required.

Note
 The ACK[0:2] bits are never included in the parity calculation. Debuggers must remember this when parity
checking the data from a read operation, when the debugger receives a continuous stream of 36 bits, as shown in
Figure 4-2 on page 4-95:
• Bits 0 to 2 are ACK[0:2].
• Bits 3 to 34 are RDATA[0:31].
• Bit 35 is the parity bit.

The parity check must be applied to bits 3 to 34 of this block of data, and the result compared with bit 35, the parity
bit.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-91
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.2 Introduction to the ARM Serial Wire Debug (SWD) protocol
4.2.6 Limitations of multi-drop

This section describes the configuration and auto-detection limitations of a multi-drop Serial Wire Debug system.

System configuration

Each device must be configured with a unique target ID, that includes a 4-bit instance ID, to differentiate between
otherwise identical targets. This places a limit of 16 such targets in any system, and means that identical devices
must be configured before they are connected together to ensure that their instance IDs do not conflict.

Auto-detection of the target

It is not possible to interrogate a multi-drop Serial Wire Debug system that includes multiple devices to establish
which devices are connected. Because all devices are selected on coming out of a line reset, no communication with
a device is possible without prior selection of that target using its target ID. Therefore, connection to a multi-drop
Serial Wire Debug system that includes multiple devices requires that either:

• The host has prior knowledge of the devices in the system and is configured before target connection.

• The host attempts auto-detection by issuing a target select command for each of the devices it has been
configured to support. While this is likely to involve a large number of target select commands, it must be
possible to iterate through all the supported devices in a reasonable time from the viewpoint of a user of the
debug tools.

Note
 This means that debug tools cannot connect seamlessly to targets in a multi-drop Serial Wire Debug system that they
have never seen before. However, if the debug tools can be provided with the target ID of such targets by the user
then the contents of the target can be auto-detected as normal.

To protect against multiple selected devices all driving the line simultaneously SWD protocol version 2 requires:

• For multi-drop SWJ-DP, the JTAG connection is selected out of powerup reset. JTAG does not drive the line.
See Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP).

• For multi-drop SW-DP, the DP is in the dormant state out of powerup reset. See Dormant operation on
page 5-113.
4-92 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
4.3 Serial Wire Debug protocol operation
This section gives an overview of the bidirectional operation of the protocol. It illustrates each of the possible
sequences of operations on the Serial Wire Debug interface data connection.

The sequences of operations illustrated here are:
• Successful write operation (OK response) on page 4-94.
• Successful read operation (OK response) on page 4-95.
• WAIT response to read or write operation request on page 4-96.
• FAULT response to read or write operation request on page 4-96.
• Protocol error response on page 4-97.
• Sticky overrun behavior on page 4-98.
• SW-DP write buffering on page 4-99.

Key to illustrations of operations describes the terms used in the illustrations.

4.3.1 Key to illustrations of operations

The illustrations of the different possible operations use the following terms:

Start A single start bit, with value 1.

APnDP A single bit, indicating whether the Debug Port or the Access Port Access register is to be accessed.
This bit is 0 for an DPACC access, or 1 for a APACC access.

RnW A single bit, indicating whether the access is a read or a write. This bit is 0 for an write access, or 1
for a read access.

A[2:3] Two bits, giving the A[3:2] address field for the DP or AP register Address:

• For a DPACC access, the register being addressed depends on the A[3:2] value and, if
A[3:2]==0b01, the value held in SELECT. DPBANKSEL. For details see:

— DP architecture version 1 (DPv1) address map on page 2-42

— DP architecture version 2 (DPv2) address map on page 2-43.

• For an APACC access, the register being addressed depends on the A[3:2] value and the value
held in SELECT.{APSEL,APBANKSEL}. For details of the addressing see:

— MEM-AP register summary on page 7-146 for accesses to a MEM-AP register

— JTAG-AP register summary on page 8-176 for accesses to a JTAG-AP register.

Note
 The A[3:2] value is transmitted Least Significant Bit (LSB) first on the wire. This is why it appears

as A[2:3] on the diagrams.

Parity A single parity bit for the preceding packet. See Parity on page 4-91.

Stop A single stop bit. In the synchronous SWD protocol this is always 0.

Park A single bit. The host must drive the Park bit HIGH to park the line before tristating it for the
turnaround period. This ensures the line is read as HIGH by the target. This is required as the pull-up
on the Serial Wire Debug interface is weak. The target reads this bit as 1.

Trn Turnaround. See Line turn-round on page 4-90.

Note
 All the examples given in this chapter show the default turnaround period of one cycle.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-93
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
ACK[0:2] A three-bit target-to-host response.

Note
 The ACK value is transmitted LSB-first on the wire. This is why it appears as ACK[0:2] on the

diagrams.

WDATA[0:31]

32 bits of write data, from host to target.

Note
 The WDATA value is transmitted LSB-first on the wire. This is why it appears as WDATA[0:31] on

the diagrams.

RDATA[0:31]

32 bits of read data, from target to host.

Note
 The RDATA value is transmitted LSB-first on the wire. This is why it appears as RDATA[0:31] on

the diagrams.

Note
 The diagrams in this section are included to show the operation of the Serial Wire Debug protocol. They are not
timing diagrams for the protocol. Contact ARM if you require more information about timings of the serial
connection to the SW-DP.

4.3.2 Successful write operation (OK response)

On receiving a write package request, if the SW-DP is ready for the WDATA data transfer phase, and there is no
error condition, it issues an OK response. This is indicated by an acknowledge response of 0b001.

This does not apply to writes to TARGETSEL. See Connection and line reset sequence on page 4-104.

Therefore, a successful write operation consists of three phases:
1. An eight-bit write packet request, from the host to the target.
2. A three-bit OK acknowledge response, from the target to the host.
3. A 33-bit WDATA data transfer phase, from the host to the target.

By default, there are single-cycle turnaround periods between each of these phases. See Line turn-round on
page 4-90 for more information.

A successful write operation is shown in Figure 4-1.

Figure 4-1 Serial Wire Debug successful write operation

P
ar

ity

Tr
n001Tr
n

S
to

p
P

ar
ity

A
P

nD
P

0

S
ta

rt

A[2:3]

P
ar

k

WDATA[0:31]

Wire driven by: Host Target Host

Clock

ACK[0:2]RnW
4-94 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
The host must start the write transfer immediately after receiving the OK response from the target. This behavior is
the same whether the write is to the DP or to an AP. The OK response shown in Figure 4-1 on page 4-94 only
indicates that the DP is ready to accept the write data. The DP writes this data after the write phase has completed,
and therefore the response to the DP write itself is given on the next operation. However, the SW-DP can buffer AP
writes, as described in SW-DP write buffering on page 4-99.

There is no turnaround phase after the data phase. The host is driving the line, and can start the next operation
immediately.

4.3.3 Successful read operation (OK response)

On receiving a read packet request, if the SW-DP is ready for the RDATA data transfer phase, and there is no error
condition, it issues an OK response. This is indicated by an acknowledge response of 0b001.

Therefore, a successful read operation consists of three phases:
1. An eight-bit read packet request, from the host to the target.
2. A three-bit OK acknowledge response, from the target to the host.
3. A 33-bit RDATA data transfer phase, where data is transferred from the target to the host.

By default, there are single-cycle turnaround periods between the first and second of these phases, and after the third
phase. See Line turn-round on page 4-90 for more information. However, there is no turnaround period between the
second and third phases, because the line is driven by the target in both of these phases.

Figure 4-2 shows a successful read operation.

Figure 4-2 Serial Wire Debug successful read operation

If the host requested a read access to the DP then the SW-DP sends the read data immediately after the
acknowledgement response.

Read accesses to the AP are posted. This means that the result of the access is returned on the next transfer. This can
be another AP register read, or a DP register read of RDBUFF.

To make a series of AP reads a debugger only has to insert one read of the RDBUFF register:

• On the first AP read access, the read data returned is UNKNOWN. The debugger must discard this result.

• The next AP read access, if successful, returns the result of the previous AP read.

• This can repeated for any number of AP reads. Issuing the last AP read packet request returns the last-but-one
AP read result.

• The debugger can then read the DP RDBUFF register to obtain the last AP read result.

So that a debugger can recover from line errors, the next transaction after an AP register read can be any DP register
read. If the next transaction is a DP register read other than a read of RDBUFF then a following AP register read or
read of RDBUFF returns the result of the first AP register read.

If the next transaction following an AP register read is an AP register write or a DP register write then the result of
the first AP register read is lost because any following AP register read or read of RDBUFF returns an UNKNOWN
value.

P
ar

ity001Tr
n

S
to

p
P

ar
ity

A
P

nD
P

1

S
ta

rt

A[2:3]

P
ar

k

RDATA[0:31] Tr
n

Wire driven by: Host Target

Clock

RnW ACK[0:2]
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-95
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
4.3.4 WAIT response to read or write operation request

If the SW-DP is not able to process the request from the debugger immediately it must issue a WAIT response. A
WAIT response to a read or write packet request consists of two phases:
1. An eight-bit read or write packet request, from the host to the target.
2. A three-bit WAIT acknowledge response, from the target to the host.

By default, there are single-cycle turnaround periods between these two phases, and after the second phase. See Line
turn-round on page 4-90 for more information.

A WAIT response to a read or write packet request is shown in Figure 4-3.

Figure 4-3 Serial Wire Debug WAIT response to a packet request

If overrun detection is enabled then CTRL/STAT.STICKYORUN is set to 1 and a data phase is required on a WAIT
response. For more information see Sticky overrun behavior on page 4-98.

A WAIT response must not be issued to the following requests. The SW-DP must always process these requests
immediately:

• Reads of the DPIDR register.

• Reads of the CTRL/STAT register.

• Writes to the ABORT register.

With any other request, the DP issues a WAIT response if it cannot process the request. This happens if:

• A previous AP or DP access is outstanding.

• The new request is an AP read request and the result of the previous AP read is not yet available.

Normally, when a debugger receives a WAIT response it retries the same operation. This enables it to process data
as quickly as possible. However, if several retries have been attempted, with a wait that is long enough for a slow
interconnection and memory system to respond, if appropriate, the debugger might write to ABORT.DAPABORT.
This signals to the active AP that it must terminate the transfer that it is currently attempting. An AP implementation
might be unable to terminate a transfer on its SoC interface. However, on receiving a DAP abort request the AP
must free up the interface to the Debug Port.

Writing to the ABORT register after receiving a WAIT response enables the debugger to access other parts of the
debug system.

4.3.5 FAULT response to read or write operation request

A SW-DP must not issue a FAULT response for:

• Reads of the DPIDR register, which is a read-only register.

• Reads of the CTRL/STAT register, which is a read/write register.

• Writes to the ABORT register, which is a write-only register.

For any other access, the SW-DP issues a FAULT response if any sticky flag is set to 1 in the CTRL/STAT register.

A FAULT response to a read or write packet request consists of two phases:
1. An eight-bit read or write packet request, from the host to the target.

R
nW Tr
n010Tr
n

S
to

p

P
ar

ity

A
P

nD
P

S
ta

rt

A[2:3]

P
ar

k

Wire driven by: Host Target

Clock

ACK[0:2]
4-96 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
2. A three-bit FAULT acknowledge response, from the target to the host.

By default, there are single-cycle turnaround periods between these two phases, and after the second phase. See Line
turn-round on page 4-90 for more information.

A FAULT response to a read or write packet request is shown in Figure 4-4.

Figure 4-4 Serial Wire Debug FAULT response to a packet request

If overrun detection is enabled then CTRL/STAT.STICKYORUN is set to 1 and a data phase is required on a FAULT
response. For more information see Sticky overrun behavior on page 4-98.

Use of the FAULT response enables the protocol to remain synchronized. A debugger might stream a block of data
and then check the CTRL/STAT register at the end of the block.

In a SW-DP, the sticky error flags are cleared to 0 by writing bits in the ABORT register.

4.3.6 Protocol error response

A protocol error occurs if any of the following occurs:

• The Parity bit does not match the parity of the packet request.

For more information about the parity checks in the SWD protocol see Parity on page 4-91.

• The Stop bit is not 0.

• The Park bit is not 1.

• DLCR.TURNROUND indicates an unsupported turnaround period.

Note
 If the Parity bit in the WDATA transfer phase does not match the parity of the data, this does not cause a protocol
error response, as the SW-DP has already given its response to the header. For more information, see Sticky flags
and DP error responses on page 2-34.

If overrun detection is enabled then CTRL/STAT.STICKYORUN is set to 1 and the target must wait until the data
phase of the transaction has completed before entering the protocol error state. Otherwise, it enters the protocol error
state immediately.

When a protocol error is detected by the SW-DP, the SW-DP does not reply to the packet request and does not drive
the line. This is illustrated in Figure 4-5 on page 4-98.

Note
 If SWD protocol version 2 is implemented, the SW-DP also does not reply to a TARGETSEL register write packet
request.

R
nW Tr
n100Tr
n

S
to

p

P
ar

ity

A
P

nD
P

S
ta

rt

A[2:3]

P
ar

k

Wire driven by: Host Target

Clock

ACK[2:0]
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-97
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
Figure 4-5 Serial Wire Debug protocol error after a packet request

When in protocol error state:

• If the target detects a valid read of the DP DPIDR register, it is IMPLEMENTATION DEFINED whether the target
leaves the protocol error state, and gives an OK response.

• If the target detects a valid packet header, other than the read of the DP DPIDR register, or the target detects
an IMPLEMENTATION DEFINED number of additional protocol errors, it enters the lockout state.

ARM recommends that the target enters the lockout state after one more protocol error is detected while in
the protocol error state.

If the target cannot leave the protocol error state on a read of the DPIDR register, then the protocol error and lockout
states are equivalent.

The target must leave the protocol error state on an line reset.

The target only leaves the lockout state on a line reset.

If the SW-DP implements SWD protocol version 2, it must enter the lockout state after a single protocol error
immediately after a line reset. However, if the first packet request detected by the target following line reset is valid
it can then revert to entering the lockout state after an IMPLEMENTATION DEFINED number of protocol errors.

Host response to protocol error

If the host does not receive an expected response from the target, it must leave the line not driven for at least the
length of any potential data phase and then attempt a line reset. For more information, see Connection and line reset
sequence on page 4-104.

The host can attempt reads of the DP DPIDR register before attempting a line reset, as the target might respond and
leave the protocol error state, but ARM does not recommend this.

If the transfer that resulted in the original protocol error response was a write you can assume that no write occurred.
If the original transfer was a read it is possible that the read was issued to an AP. Although this is unlikely, you must
consider this possibility because reads are pipelined.

4.3.7 Sticky overrun behavior

If a SW-DP receives a transaction request when the previous transaction has not completed it returns a WAIT
response. If overrun detection is enabled in the CTRL/STAT register, the CTRL/STAT.STICKYORUN flag is set to
1. Subsequent transactions generate FAULT responses, because a sticky flag is set to 1. If overrun detection is
enabled, CTRL/STAT.STICKYORUN is also set if there is a FAULT response, protocol error, or line reset.

When overrun detection is enabled, WAIT and FAULT responses require a data phase:
• If the transaction is a read the data in the data phase is UNKNOWN. The target does not drive the line, and the

host must not check the parity bit.
• If the transaction is a write the data phase is ignored.

Figure 4-6 on page 4-99 shows the WAIT or FAULT response to a read operation when overrun detection is enabled,
and Figure 4-7 on page 4-99 shows the response to a write operation when overrun detection is enabled.

R
nW S
to

p
P

ar
ity

A
P

nD
P

S
ta

rt

A[2:3]

P
ar

k

Wire driven by: Host

Clock

Line not driven by target

Packet request
4-98 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
Figure 4-6 SW-DP WAIT or FAULT response to a read operation when overrun detection is enabled

Figure 4-7 SW-DP WAIT or FAULT response to a write operation when overrun detection is enabled

4.3.8 SW-DP write buffering

The SW-DP can implement a write buffer, enabling it to accept write operations even when other transactions are
outstanding. If a DP implements a write buffer it issues an OK response to a write request if it can accept the write
into its write buffer. This means that an OK response to a write request, other than a write to the ABORT register in
the DP, indicates only that the write has been accepted by the DP. It does not indicate that all previous transactions
have completed.

The maximum number of outstanding transactions, and the types of transactions that might be outstanding, when a
write is accepted, are IMPLEMENTATION DEFINED. However, the DP must be implemented so that all accesses occur
in order. For example, if a DP only buffers writes to AP registers then, if it has any writes buffered it must stall on
a DP register write access, to ensure that the writes are performed in order.

If a write is accepted into the write buffer but later abandoned then the CTRL/STAT.WDATAERR flag is set to 1.
A buffered write is be abandoned if:

• A sticky flag is set to 1 by a previous transaction.

• A DP read of the IDCODE or CTRL/STAT register is made. Because the DP must not stall reads of these
registers, it must:

— Perform the IDCODE or CTRL/STAT register access immediately.

— Discard any buffered writes, because otherwise they would be performed out-of-order.

— Set the WDATAERR flag to 1.

• A DP write of the ABORT register is made. The DP must not stall an ABORT register access.

This means that if software makes a series of AP write transactions, it might not be possible to determine which
transaction failed from examining the ACK responses. However it might be possible to use other enquiries to find
which write failed. For example, if when using the auto-address increment (AddrInc) feature of a Memory Access
Port, software can read the TAR to find the address of the last successful write transaction.

The write buffer must be emptied before the following operations can be performed:

• Any AP read operation.

• Any DP operation other than a read of the IDCODE or CTRL/STAT register, or a write of the ABORT
register.

If the write buffer is not empty, attempting these operations causes a WAIT response from the DP.

100

010

Tr
n

S
to

p
P

ar
ity

A
P

nD
P

1

S
ta

rt

A[2:3]

P
ar

k

Tr
n

Wire driven by: Host Target

Clock

WAIT
FAULT

ACK[0:2]RnW

Line not driven for 33 cycles
(32 data bits + parity bit)

100

010

P
ar

ity

Tr
n

Tr
n

S
to

p
P

ar
ity

A
P

nD
P

0

S
ta

rt

A[2:3]

P
ar

k WDATA[0:31]
Value is ignored by the target

Wire driven by: Host Target Host

Clock

WAIT
FAULT

ACK[0:2]RnW
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-99
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
Note
 If pushed-verify or pushed-compare is enabled, AP write transactions are converted into AP reads. These are then
treated in the same way as other AP read operations. See Pushed-compare and pushed-verify operations on
page 2-36 for details of these operations.

If a DP read of the IDCODE or CTRL/STAT register, or a DP write to the ABORT register, is required immediately
after a sequence of AP writes, the software must first perform an access that the DP is able to stall. This ensures that
the write buffer is emptied before the DP register access is performed. If this is not done, WDATAERR might be set
to 1, and the buffered writes lost.

Note
 There is no requirement to insert an extra instruction to terminate the sequence of AP writes if the sequence of writes
is followed by one of:
• An AP read operation.
• A write operation that can be stalled, such as a write to the SELECT register.

This means that in many cases the requirement for an additional instruction can be avoided.

4.3.9 Summary of target responses

The following subsections show the target SW-DP responses for different transaction requests:
• Target SW-DP responses for DP transaction requests.
• Target SW-DP responses for AP transaction requests on page 4-102.

Target SW-DP responses for DP transaction requests

For DP transaction requests, the register accessed is determined by:
• The value of A[3:2].
• In DPv1 and DPv2, when A[3:2] is 0b01, the value of SELECT.DPBANKSEL.

The behavior of some read transaction requests depends on the register accessed, as Table 4-1 shows.

Table 4-1 shows the target SW-DP response to all possible debugger DP read operation requests.

Table 4-2 on page 4-101 shows the target SW-DP response to all possible debugger DP write operation requests,
assuming the WDATA parity check is good.

Table 4-1 Target response summary for DP read transaction requests

A[3:2] SELECT.
DPBANKSEL

Sticky flag
set to 1?

AP
Ready?

SW-DP (target) response

ACK Action

0b00 x xa xa OK Respond with register value.

0b01 0x0 xa xa OK Respond with register value.

Not 0x0 No Yes OK Respond with register value.

No No WAIT No data phase, unless overrun detection is enabledb.

Yes x FAULT No data phase, unless overrun detection is enabledb.
4-100 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
Fault conditions that are not shown in these tables are described in Fault conditions not included in the target
response tables on page 4-103.

0b10 x No Yes OK Respond by resending the last read value sent to the host. This
value is the result of one of:
• the most recent AP read
• the most recent DP RDBUFF read.

No No WAIT No data phase, unless overrun detection is enabledb.

Yes x FAULT No data phase, unless overrun detection is enabledb.

0b11 x No Yes OK Respond with the value from the previous AP read, and set
CTRL/STAT.READOK bit to 1.

No No WAIT No data phase, unless overrun detection is enabledb. Set
CTRL/STAT.READOK bit to 0.

Yes x FAULT No data phase, unless overrun detection is enabledb. Set
CTRL/STAT.READOK bit to 0.

a. The SW-DP must always give an OK response to a read of the IDCODE or CTRL/STAT register.
b. See Sticky overrun behavior on page 4-98 for details of data phase when overrun detection is enabled.

Table 4-2 Target response summary for DP write transaction requests

A[3:2] Protocol
version

Sticky flag
set to 1? AP Ready?

SW-DP (target) response

ACK Action

0b00 x x x OK Write WDATA value to ABORT register.

0b01 or

0b10

x No Yesa OK Write WDATA value to the selected DP register.

No WAIT No data phase, unless overrun detection is enabledb.

Yes x FAULT No data phase, unless overrun detection is enabledb.

0b11 v1 No Yesa OK Register is reserved, SBZ. Write is ignored.

No WAIT No data phase, unless overrun detection is enabledb.

Yes x FAULT No data phase, unless overrun detection is enabledb.

v2 x x None Write WDATA to TARGETSEL registerc.

a. Writes might be accepted when other transactions are still outstanding, These writes might be abandoned subsequently. See SW-DP write
buffering on page 4-99 for more information.

b. See Sticky overrun behavior on page 4-98 for details of data phase when overrun detection is enabled.
c. Target gives no response. See Connection and line reset sequence on page 4-104.

Table 4-1 Target response summary for DP read transaction requests (continued)

A[3:2] SELECT.
DPBANKSEL

Sticky flag
set to 1?

AP
Ready?

SW-DP (target) response

ACK Action
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-101
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
Target SW-DP responses for AP transaction requests

For AP transaction requests, the register accessed is determined by the value of A[3:2] combined with the values of
SELECT.{APSEL,APBANKSEL}. For more information, see Using the Access Port to access debug resources on
page 1-27.

Table 4-3 summarizes the target SW-DP response to all possible debugger AP read operation requests.

Table 4-4 summarizes the target SW-DP response to all possible debugger AP write operation requests, assuming
the WDATA parity check is good.

Fault conditions that are not shown in these tables are described in Fault conditions not included in the target
response tables on page 4-103.

Table 4-3 Target response summary for AP read transaction requests

A[3:2] Sticky flag
set to 1?

AP
Ready?

SW-DP (target) response

ACK Action

0bxx No Yes OK Normallya, return value from previous AP readb and set CTRL/STAT.READOK bit
to 1. Initiate AP read of addressed register.

No WAIT No data phase, unless overrun detection is enabledc. Set CTRL/STAT.READOK bit
to 0.

Yes x FAULT No data phase, unless overrun detection is enabledc. Set CTRL/STAT.READOK bit
to 0.

a. If pushed-verify or pushed-compare is enabled, behavior is UNPREDICTABLE.
b. On the first of a sequence of AP reads, the value returned in the data phase is UNKNOWN.
c. See Sticky overrun behavior on page 4-98 for details of data phase when overrun detection is enabled.

Table 4-4 Target response summary for AP write transaction requests

A[3:2] Sticky flag set to 1? AP Ready?
SW-DP (target) response

ACK Action

0bxx No Yesa OK Normallyb, write WDATA value to the indicated AP register.

No WAIT No data phase, unless overrun detection is enabledc.

Yes x FAULT No data phase, unless overrun detection is enabledc.

a. Writes might be accepted when other transactions are still outstanding, These writes might be abandoned subsequently. See SW-DP write
buffering on page 4-99 for more information.

b. If pushed-verify or pushed-compare is enabled, the write is converted to a read of the addressed AP register, and the value returned by this
read is compared with the supplied WDATA value, see Pushed-compare and pushed-verify operations on page 2-36 for more information.

c. See Sticky overrun behavior on page 4-98 for details of data phase when overrun detection is enabled.
4-102 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.3 Serial Wire Debug protocol operation
Fault conditions not included in the target response tables

There are two fault conditions that are not included in possible operation requests listed in Table 4-1 on page 4-100
to Table 4-4 on page 4-102:

Protocol error

If there is a protocol error then the target does not respond to the request at all. This means that when
the host expects an ACK response, it finds that the line is not driven. See Protocol error response
on page 4-97.

WDATA fails parity check (write operations only)

The ACK response of the DP is sent before the parity check is performed, and is shown in Table 4-2
on page 4-101. When the parity check is performed and fails, the CTRL/STAT.WDATAERR flag is
set to 1.

4.3.10 Summary of host responses

Every access by a debugger to a SW-DP starts with an operation request. Summary of target responses on
page 4-100 listed all possible requests from a debugger, and summarized how the SW-DP responds to each request.

Whenever a debugger issues an operation request to a SW-DP, it expects to receive a 3-bit acknowledgement, as
listed in the ACK columns of Table 4-1 on page 4-100 to Table 4-4 on page 4-102. Table 4-5 summarizes how the
debugger must respond to this acknowledgement, for all possible cases.

Note
 For SWD protocol version 2, this table does not apply to writes to TARGETSEL. See Connection and line reset
sequence.

Table 4-5 Summary of host (debugger) responses to the SW-DP acknowledge

Operation
requested

ACK
received

Host response

Data phase Additional action

R OK Capture RDATA from target and
check for valid paritya and
protocol.

Might have to repeat original read request or use the RESEND
register if a parity or protocol fault occurs and are unable to flag data
as invalidb.

Invalid
ACK

Back off because of possible
data phase.

Can check CTRL/STAT register to see if the response sent was OK.

W OK Send WDATA. Validity of this transfer is confirmed on next access.

Invalid
ACK

Back off to ensure that target
does not capture next header as
WDATA.

Repeat the write access. A FAULT response is possible if the first
response was sent as OK but not recognized as valid by the debugger.
The subsequent write is not affected by the first, misread, response.

x WAIT No data phase, unless overrun
detection is enabledc.

Normally, repeat the original operation request. See WAIT response to
read or write operation request on page 4-96 for more information.

FAULT No data phase, unless overrun
detection is enabledc.

Can send new headers, but only an access to DP register addresses
0b0X gives a valid response.

No ACK Back off because of possible
data phase.

Can attempt IDCODE register read. Otherwise reset connection and
retrain. See Protocol error response on page 4-97.

a. See Parity on page 4-91 for details of the parity checking.
b. The host debugger might support corrupted reads, or it might have to re-try the transfer.
c. If overrun detection is enabled, a data phase is required. See Sticky overrun behavior on page 4-98 for a description of the behavior on read

and write operations.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-103
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.4 Serial Wire Debug interface
4.4 Serial Wire Debug interface
The Serial Wire Debug protocol operates with a synchronous serial interface. This uses a single bidirectional data
signal, and a clock signal.

This section gives an overview of the physical Serial Wire Debug interface.

4.4.1 Line interface

The Serial Wire Debug interface uses a single bidirectional data pin, SWDIO. That is, the same signal is used for
both host and target sourced signals.

The Serial Wire Debug interface is synchronous, and requires a clock pin, SWCLK.

The clock can be sourced from the target and exported, or provided by the host. This clock is then used by the host
as a reference for generation and sampling of data so that the target is not required to perform any over-sampling.

Both the target and host are capable of driving the bus HIGH and LOW or tristating it. The ports must be able to
tolerate short periods of contention that might occur because of a loss of synchronization.

The clock can be asynchronous to any system clock, including the debug logic clock. The Serial Wire Debug
interface clock can be stopped when the debug port is idle, see Introduction to the ARM Serial Wire Debug (SWD)
protocol on page 4-89.

4.4.2 Line pull-up

So that the line is in a known state when neither host nor target is driving the line, a 100KΩ pull-up is required at
the target, but this can only be relied on to maintain the state of the wire. If the wire is driven LOW and released,
the pull-up resistor eventually returns the line to the HIGH state, but this takes many clock periods.

The pull-up is intended to prevent false detection of signals when no host is connected. This means it must be of a
suitably high value to reduce current consumption from the target when the host actively pulls down the line.

Note
 A small current drains from the target whenever the line is driven LOW. If the interface is left connected for
extended periods when the target has to use a low-power mode, the line must be held HIGH, or reset, by the host
until the interface is activated.

4.4.3 Connection and line reset sequence

A debugger must use a line reset sequence to ensure that hot-plugging the serial connection does not result in
unintentional transfers. The line reset sequence ensures that the SW-DP is synchronized correctly to the header that
signals a connection.

The SWD interface does not include a reset signal. A line reset is achieved by holding the data signal HIGH for at
least 50 clock cycles, followed by at least two idle cycles. Figure 4-8 shows the interface timing for a line reset
followed by a DP DPIDR register read.

Figure 4-8 Line reset sequence followed by a DP DPIDR register read

SWDIOTMS

SWCLKTCK

at least 50 clocks with
SWDIOTMS HIGH

1 1 1 10 0 0 0

at least two
Idle cycles

Park

Stop

Parity

A[2:3]

RnW

APnDP

Start

line reset DP DPIDR register read
4-104 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

4 The Serial Wire Debug Port (SW-DP)
4.4 Serial Wire Debug interface
A line reset is required when first connecting to the target. A line reset might be required following a protocol error.
See Protocol error response on page 4-97.

A line reset resets DLCR.

Note
 Other SW-DP registers are reset only by a powerup reset.

When waiting for a packet header, if the target detects a sequence of 50 clock cycles with the data signal held HIGH,
followed by at least two idle cycles, it must enter the reset state. It is IMPLEMENTATION DEFINED whether a sequence
of 50 clock cycles with the data signal held HIGH, detected at any other time, causes the interface to enter the reset
state.

The only valid transactions in reset state are:
• A read of the DPIDR register. This takes the connection out of reset state.
• One of the switching sequences defined by SWD and JTAG select mechanism on page 5-110, if implemented.
• A write to the TARGETSEL register, if SWD protocol version 2 is implemented. If this selects the target, the

interface remains in reset state.

Note
 Only writes to TARGETSEL immediately after entry to the reset state can select or deselect the target. See

Target selection protocol, SWD protocol version 2.

Any of these sequences can be aborted by a second line reset. The behavior of the target is UNPREDICTABLE if any
other transaction is made in reset state.

If the host does not see an expected response when reading the DPIDR register, it must retry the reset sequence. This
is because the target might have been in a state where, for example, it treated the initial line reset as a data phase of
a transaction and so did not detect it as a valid line reset. If this is the case, the target detects the line reset as a
protocol error and requires a second line reset to respond correctly.

If overrun detection is enabled then the line reset sets CTRL/STAT.STICKYORUN to 1.

4.4.4 Target selection protocol, SWD protocol version 2

To select a new target a host must:

1. Perform a line reset. See Figure 4-9.

2. Write to DP register 0xC, TARGETSEL, where the data indicates the selected target. The target response must
be ignored. See Figure 4-9.

3. Read from the DP register 0x0, DPIDR, to verify that the target has been successfully selected.

Figure 4-9 Line reset sequence followed by a DP TARGETSEL write

A write to the TARGETSEL register must always be followed by a read of the DPIDR register or a line reset. If the
response to the DPIDR read is incorrect, or there is no response, the host must start the sequence again.

SWDIOTMS

SWCLKTCK

1 1 1 10 1 1 0

Park
Stop

Parity
A[2:3]

RnW
APnDP

Start

line reset DP TARGETSEL register write

five cycles
not driven

WDATA[0:32]

at least 50
cycles
HIGH

Write to TARGETSEL

Parity

at least two
Idle cycles
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-105
ID080813 Non-Confidential

4 The Serial Wire Debug Port (SW-DP)
4.4 Serial Wire Debug interface
The target is selected on receiving a line reset sequence.

Following receipt of a line reset sequence, if the target then receives a write to TARGETSEL that does not select
the same target, the target is deselected.

When deselected, the target ignores all accesses and must not drive the line. Only a write to TARGETSEL
immediately following a line reset sequence can select or deselect the target. Writes to TARGETSEL at any other
time are UNPREDICTABLE.

If the target encounters a protocol error, it becomes deselected. Specifically, it does not respond to a read of the
DPIDR register.

For more information, including the required behavior of the target during the response phase of the write to the
TARGETSEL register, see Protocol errors, SW-DP on page 2-36.

A parity error in the data phase of a write to the TARGETSEL register does not set the CTRL/STAT.WDATAERR
bit to 1. A parity error in the data phase of a write to the TARGETSEL register is treated as a protocol error.

Accesses to the TARGETSEL register are not affected by the state of the CTRL/STAT.{WDATAERR,
STICKYERR, STICKYCMP, STICKYORUN} bits.

Implementations of Serial Wire Debug protocol version 2 must also support dormant operation. See Dormant
operation on page 5-113.
4-106 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 5
The Serial Wire/JTAG Debug Port (SWJ-DP)

This appendix describes multiple protocol interoperability as implemented in the Serial Wire/JTAG Debug Port
(SWJ-DP) CoreSight component. It contains the following sections:
• Serial Wire/JTAG Debug Port (SWJ-DP) on page 5-108.
• SWD and JTAG select mechanism on page 5-110.
• Dormant operation on page 5-113.
• Restriction on switching on page 5-120.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 5-107
ID080813 Non-Confidential

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.1 Serial Wire/JTAG Debug Port (SWJ-DP)
5.1 Serial Wire/JTAG Debug Port (SWJ-DP)
The SWJ-DP interface provides a mechanism to select between Serial Wire Debug (SWD) and JTAG Data Link
protocols. This enables the JTAG-DP and SW-DP to share pins.

SWJ-DP is a combined JTAG-DP and SW-DP that enables a debug probe to connect to the target using either the
SWD protocol or JTAG. To make efficient use of package pins, the SWD interface shares, or overlays, the JTAG
pins, and a mechanism is provided to switch between JTAG-DP and SW-DP, depending on which debug probe type
is connected. The SWJ-DP behaves like a JTAG-DP device if normal JTAG sequences are sent to it.

5.1.1 SWJ-DP structure

The SWJ-DP logically consists of a wrapper around the JTAG-DP and SW-DP. Its function is to select JTAG or
SWD as the Data Link protocol and enable either JTAG-DP or SW-DP as the interface to the DAP.

Figure 5-1 shows the wrapped SW-DP and JTAG-DP.

Figure 5-1 SWJ-DP conceptual model

There is no requirement to implement separate SW-DP and JTAG-DP blocks within the SWJ-DP wrapper.

The number, type and location of APs accessed by the SWJ-DP must be the same, and must access the same debug
resources, but there is no requirement to implement these as shared APs.

This means that tools must not rely on the state of either DP, or any AP accessed through the DP, persisting when
the other DP is selected. On switching DPs, the debugger must re-initialize the DAP, including setting the
CTRL/STAT.{CDBGPWRUPREQ, CSYSPWRUPREQ} bits correctly.

The JTAG-DP and SW-DP programmers’ models do not have to implement the same Debug Port architecture
version. See Chapter 2 The Debug Port (DP).

Note
 If the JTAG protocol is never used, a pull-down on TDI is required at the target.

5.1.2 SWJ-DP operation

SWJ-DP enables a SoC to be designed for used in systems that require either a JTAG interface or a Serial Wire
Debug interface. There is however a trade-off between the number of pins used and compatibility with existing
hardware and test equipment.

There are several scenarios where the use of a JTAG debug interface must be maintained, such as:

• To enable inclusion in an existing scan chain, generally on-chip TAPs used for test or other purposes.

• To enable the device to be cascaded with legacy devices which use JTAG for debug, although this can also
be supported using a JTAG Access Port (JTAG-AP).

• To enable use of existing debug hardware with the corresponding test TAPs, for example, in Automatic Test
Equipment (ATE).

SWJ-DP
SW-DP

JTAG-DP

SWD/
JTAG
select

SWDIOTMS
SWCLKTCK

TDO
TDI

DAP
Internal bus
5-108 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.1 Serial Wire/JTAG Debug Port (SWJ-DP)
A SoC fitted with SWJ-DP support can be connected to legacy JTAG equipment without any requirement to make
changes. If a SWD tool is available, then only two pins are required, instead of the usual four used for JTAG. Two
pins are therefore released for alternative functions.

These two released pins can only be used when there is no conflict with their use in JTAG operation. In addition, to
support use of SWJ-DP in a scan chain with other JTAG devices, the default state after reset must be to use these
released pins for their JTAG operation. However, if the direction of the alternative function is compatible with being
driven by a JTAG debug device, the transition of the JTAG TAP to the Shift-DR or Shift-IR state can transition these
pins from their alternative function to JTAG operation.

The alternate function cannot be used while the SoC is being used in JTAG operation.

The switching scheme is arranged so that, provided there is no conflict on the TDI and TDO pins, a JTAG debugger
is able to connect by sending a specific sequence.

The connection sequence used for SWD is safe when applied to the JTAG interface, even when hot-plugged,
enabling the debugger to continually retry its access sequence. A sequence with TMS HIGH ensures that all parts
of the SWJ-DP are in a known reset state. The pattern that selects SWD has no effect on JTAG devices. SWJ-DP is
compatible with a free-running TCK, or a gated clock, that is supplied by the external tools.

5.1.3 SWD and JTAG interface

The external JTAG interface has four mandatory pins:
TCK Test Clock.
TMS Test Mode State.
TDI Test Data In.
TDO Test Data Out.

There is also an optional reset pin, nTRST, which, when available, can reset the TAP controller's state machine.
Debug ports also require a separate system reset signal that is asserted, for example, at powerup.

The SWD interface has two pins:
SWDIO Data In/Out.
SWCLK Clock. The clock can be either an input or an output.

To enable sharing of the connector for either JTAG or SWD, connections must be made external to the SWJ-DP
block, see SWJ-DP conceptual model on page 5-108. The combined SWJ-DP includes two shared pins:

SWDIOTMS Shared for SWDIO and TMS data signals.

SWCLKTCK Shared for SWCLK and TCK clock signals.

In addition, TMS must be a bidirectional pin to support the bidirectional SWDIO pin for Serial Wire Debug
protocol.

Note
 • When the Serial Wire Debug protocol is being used, the JTAG pins TDI, TDO, and nTRST are expected to

be reused.

• An SWJ-DP can be implemented in a package where the JTAG pins TDI, TDO, and nTRST are not
connected because an SWJ-DP is designed to allow selection of SWD protocol without using these JTAG
pins.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 5-109
ID080813 Non-Confidential

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.2 SWD and JTAG select mechanism
5.2 SWD and JTAG select mechanism
SWJ-DP enables either a SWD or JTAG protocol to be used on the debug port. To do this, it implements a watcher
circuit that detects a specific 16-bit select sequence on SWDIOTMS:
• A 16-bit sequence to switch from JTAG to SWD operation.
• A 16-bit sequence is to switch from SWD to JTAG.

ARM deprecates use of these sequences on devices where the dormant state of operation is implemented, and
recommends using a transition through dormant state instead. For more information, see Dormant operation on
page 5-113.

SWJ-DP defaults to JTAG operation on powerup reset and therefore the JTAG protocol can be used from reset
without sending a select sequence.

Switching from one protocol to the other can only occur when the selected interface is in its reset state. The JTAG
TAP state machine must be in its Test-Logic-Reset (TLR) state and the SWD interface must be in line-reset. The
powerup reset state for a JTAG TAP state machine is the Test-Logic-Reset state.

Having detected a switching sequence, SWJ-DP does not detect more sequences until after a reset condition. If
JTAG is selected, the JTAG TAP state machine being in the Test-Logic-Reset state is the reset condition. If SWD is
selected, a line reset is the reset condition.

Figure 5-2 is a simplified state diagram that shows how SWJ-DP transitions between selected, detecting, and
selection states.

Figure 5-2 SWD and JTAG select state diagram

Note
 In Figure 5-2:
• The JTAG-to-SWD sequence terminates in the SW-Sel reset state.
• The SWD-to-JTAG sequence terminates in the JTAG-Sel TLR state.

The recommended sequences end with a reset sequence for the selected state, to ensure the target is in the relevant
reset state.

JTAG-Sel
TLR

SW-Sel
detecting

JTAG-Sel
detecting

SW-Sel
reset

JTAG-Sel
selected

SW-Sel
selected

SWD-to-JTAG
sequence
complete

SWDIOTMS
LOW

initial state

sequence
mismatch

line reset

JTAG-to-SWD
sequence
complete

sequence
mismatch

JTAG-DP in TLR

SWDIOTMS
LOW
5-110 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.2 SWD and JTAG select mechanism
5.2.1 Switching from JTAG to SWD operation

To switch SWJ-DP from JTAG to SWD operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in
its reset state. The JTAG interface only detects the 16-bit JTAG-to-SWD sequence starting from the
Test-Logic-Reset state.

2. Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS.

3. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already
in SWD operation before sending the select sequence, the SWD interface enters line reset state.

The 16-bit JTAG-to-SWD select sequence is 0b0111 1001 1110 0111, most-significant-bit (MSB) first. This can be
represented as one of the following:
• 0x79E7, transmitted MSB first.
• 0xE79E, transmitted least-significant-bit (LSB) first.

Figure 5-3 shows the interface timing.

Figure 5-3 JTAG-to-SWD sequence timing

This sequence has been chosen to ensure that the SWJ-DP switches to using SWD whether it was previously
expecting JTAG or SWD. As long as the 50 cycles with SWDIOTMS HIGH sequence is sent first, the
JTAG-to-SWD select sequence does not affect SW-DP, or the SWD and JTAG protocols used in the SWJ-DP, and
any other TAP controllers that might be connected to SWDIOTMS.

On selecting SWD operation, the SWD interface is in a reset state. See Connection and line reset sequence on
page 4-104.

5.2.2 Switching from SWD to JTAG operation

To switch SWJ-DP from SWD to JTAG operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in
its reset state. The SWD interface only detects the 16-bit SWD-to-JTAG sequence when it is in the reset state.

2. Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS.

3. Send at least 5 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already in
JTAG operation before sending the select sequence, the JTAG TAP enters the Test-Logic-Reset state.

The 16-bit SWD-to-JTAG select sequence is 0b0011 1100 1110 0111, MSB first. This can be represented as either of
the following:
• 0x3CE7, transmitted MSB first
• 0xE73C, transmitted LSB first.

Figure 5-4 on page 5-112 shows the SWD-to-JTAG sequence timing.

At least 50 clocks
With SWDIOTMS

HIGH

At least 50 clocks
With SWDIOTMS

HIGH

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

JTAG-to-SWD sequence

SWCLKTCK

SWDIOTMS
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 5-111
ID080813 Non-Confidential

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.2 SWD and JTAG select mechanism
Figure 5-4 SWD-to-JTAG sequence timing

This sequence has been chosen to ensure that the SWJ-DP switches to using JTAG whether it was previously
expecting JTAG or SWD. If the SWDIOTMS HIGH sequence is sent first, the SWD-to-JTAG select sequence does
not affect SW-DP, or the SWD and JTAG protocols used in the SWJ-DP, and any other TAP controllers that might
be connected to SWDIOTMS.

Figure 5-4 shows that the SWD-to-JTAG sequence begins with two SWDIOTMS LOW cycles after the line reset.
No additional SWDIOTMS LOW cycles are allowed.

At least
50 clocks with
SWDIOTMS

HIGH

At least
5 clocks with
SWDIOTMS

HIGH

0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1

SWD-to-JTAG sequence

SWCLKTCK

SWDIOTMS
5-112 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.3 Dormant operation
5.3 Dormant operation
An alternative to the selection mechanism for switching between JTAG and SWD operation described in SWD and
JTAG select mechanism on page 5-110 is the dormant state of operation.

To switch between JTAG and SWD operation, a debugger must first place the target into dormant state, and then
transition to the required operating state.

Using dormant state allows the target to be placed into a quiescent mode, allowing devices to inter-operate with
other devices implementing other protocols. Those other protocols must also implement a quiescent state, with a
mechanism for entering and leaving that state that is compatible, but not necessarily compliant, with the SWJ-DP
and SW-DP protocols.

This third state of operation is required by SWJ-DP and SW-DP implementations that implement Serial Wire Debug
protocol version 2. Serial Wire Debug protocol version 2 is described in Chapter 4 The Serial Wire Debug Port
(SW-DP). Otherwise, support for dormant state is IMPLEMENTATION DEFINED. In dormant state the target must
ignore any stimulus, with any timing, other than a defined Selection Alert sequence.

The Selection Alert sequence must be followed by a protocol-specific Activation code.

Selection of dormant state is possible when either JTAG or SWD operation is selected. Figure 5-5 extends the state
diagram of Figure 5-2 on page 5-110 to include selection of dormant state, for an SWJ-DP implementation.

Figure 5-5 SWJ-DP selection of JTAG, SWD, and dormant states

Note
 • Following the DS-to-JTAG activation code, the JTAG TAP is in either the Test-Logic-Reset state or

Run-Test/Idle state, and therefore this state machine is in either the JTAG-Sel TLR state or the JTAG-Sel
selected state. Normally, the TAP state returned to is the TAP state left from. However, it is also possible to
reset the JTAG TAP state machine when JTAG is not the selected protocol.

ARM recommends the DS-to-JTAG sequence is followed by a single clock with SWDIOTMS LOW to
ensure the TAP is in the Run-Test/Idle state.

• The DS-to-SWD sequence is shown terminating in the SW-Sel reset state. The recommended sequence ends
with a line reset to ensure the target is in the reset state.

JTAG-Sel
TLR

SW-Sel
detecting

JTAG-Sel
detecting

SW-Sel
reset

JTAG-Sel
selected

SW-Sel
selected

SWD-to-JTAG
sequence complete,

deprecated

SWDIOTMS
LOW

initial state

sequence
mismatch

line reset

JTAG-to-SWD
sequence complete,

deprecated

sequence
mismatch

JTAG-DP in TLR

SWDIOTMS
LOW

Activation
Code

Dormant

Unrecognized
code

Selection
Alert

DS-to-SWD
activation code

complete

DS-to-JTAG
activation code

complete,
see note

SWD-to-DS
sequence
complete

JTAG-to-DS
sequence
complete

Deprecated state change
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 5-113
ID080813 Non-Confidential

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.3 Dormant operation
5.3.1 Use of Dormant state other than in SWJ-DP

A Serial Wire Debug device that does not implement JTAG can nevertheless implement dormant state, and
inter-operate with SWJ-DP and other JTAG devices that also implement dormant state. In this case:
• The operating mode selection state machine is simplified.
• The initial state, entered on a powerup reset, is dormant state.

Figure 5-6 shows the state diagram for an SW-DP that implements protocol version 2, meaning it supports dormant
state.

Figure 5-6 SW-DP selection of SWD, and dormant states

This means multi-drop SWJ-DP, SW-DP and JTAG TAPs can share a physical connection to a host, as shown in
Figure 5-7. These different devices can be in different physical packages, or on different dies in a single package,
or on a single die.

Figure 5-7 Multiple JTAG, SW, SWJ (multi-drop) and other protocol devices on shared connection

SW-Sel
detecting

SW-Sel
reset

SW-Sel
selected

initial state

SWD-to-DS
sequence
mismatch

line reset

SWDIOTMS
LOW

Activation
Code

Dormant

Unrecognized
code

Selection
Alert

DS-to-SWD
activation code

complete

SWD-to-DS
sequence
complete

Other
protocol

TMS
TCK
TDI

TDO

D
at

a

C
lo

ck

SWJ-DP
(multi-drop)

SW
D

IO

SW
C

LK

JTAG TAP

TM
S

TC
K

TD
I

TD
O

JTAG TAP

TM
S

TC
K

TD
I

TD
O

SWJ-DP
(multi-drop)

SW
D

IO

SW
C

LK

TD
O

TD
I

wrapper

SW-DP
(multi-drop)

SW
D

IO

SW
C

LK

TD
I

VSS
wrapper
5-114 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.3 Dormant operation
5.3.2 JTAG to Dormant Switching

To switch from JTAG to dormant a debugger must:

1. Send at least 5 SWCLKTCK cycles with SWDIOTMS HIGH. This places the JTAG TAP state machine
into the Test-Logic-Reset state, and selects the IDCODE instruction.

2. Send the recommended 31-bit JTAG-to-DS select sequence on SWDIOTMS.

The recommended 31-bit JTAG-to-DS select sequence is 0b010_1110_1110_1110_1110_1110_1110_0110, MSB first.
This can be represented as either:

• 0x2EEEEEE6 transmitted MSB first, that is, starting from bit 30.

• 0x33BBBBBA transmitted LSB first.

Figure 5-8 Recommended JTAG-to-DS sequence timing

Requirements for implementations

The JTAG-to-DS sequence is the shortest sequence that switches from JTAG-to-DS. For compatibility with other
standards, all JTAG devices that implement dormant state must recognize other sequences as valid JTAG-to-DS
select sequences.

The full sequence is defined around the concept of a zero-bit-DR-scan (ZBS or ZBS scan) which is in turn defined
by transitions of the JTAG TAP state machine. A ZBS is defined as any JTAG TAP state machine sequence that
starts at Capture-DR and ends in Update-DR without passing through Shift-DR.

Examples of a ZBS are:
• Capture-DR → Exit1-DR → Update-DR
• Capture-DR → Exit1-DR → Pause-DR → … → Pause-DR → Exit2-DR → Update-DR

The sequence also uses the ZBS count, which is defined as follows:

• The ZBS count is unlocked and reset to zero if the TAP state machine enters either the Select-IR-Scan or
Test-Logic-Reset state. This includes asynchronously entering Test-Logic-Reset following assertion of
nTRST. At reset, the ZBS count is unlocked and reset to zero.

• On entering Update-DR at the end of a ZBS scan, if the ZBS count is unlocked and less than seven, it is
incremented by one.

• The counter does not increment past seven. On entering Update-DR at the end of a ZBS scan, if the ZBS
count is unlocked and equal to seven, it is not incremented. The count does not wrap to zero.

• The ZBS count is locked if the TAP state machine enters the Shift-DR state and the ZBS count is not zero.

The JTAG-to-DS sequence is defined as any sequence of TAP state machine transitions that terminates in the
Run-Test/Idle state with a locked ZBS count of six. On entering Run-Test/Idle, the target is placed into dormant state
(DS).

The behavior of the target on entering Run-Test/Idle with other locked ZBS counts is IMPLEMENTATION DEFINED.

At least
5 clocks with
SWDIOTMS

HIGH

0 1 0 1 1 1 0 ... 1 1 0 0 1 1 0

JTAG-to-DS sequence

SWCLKTCK

SWDIOTMS
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 5-115
ID080813 Non-Confidential

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.3 Dormant operation
Although the recommended JTAG-to-DS sequence starts by placing the JTAG TAP state machine in the
Test-Logic-Reset state, this is not a requirement for recognizing the JTAG-to-DS sequence. Tools must, however,
ensure the Instruction Register (IR) is loaded with either the BYPASS or IDCODE instruction before placing the
target into the dormant state. If the IR is not loaded with either of these instructions when the target is put into
dormant state, the behavior is unpredictable.

The pseudocode function EnterDormantState describes the function of the JTAG-to-DS sequence detector. It is
notionally called on every TAP state machine transition. The function’s argument is the state being entered, and the
function’s result is a Boolean indicating whether dormant state must be entered.

For details of the pseudocode language, see Appendix C Pseudocode Definition.

enumeration TAPState {
 TestLogicReset, RunTestIdle,
 SelectDRScan, CaptureDR, ShiftDR, Exit1DR, PauseDR, Exit2DR, UpdateDR,
 SelectIRScan, CaptureIR, ShiftIR, Exit1IR, PauseIR, Exit2IR, UpdateIR};

boolean shiftDRflag = FALSE;
integer ZBScount = 0;
boolean ZBSlocked = FALSE;

// EnterDormantState()
// ===================

boolean EnterDormantState(TAPState state)
 case state of
 when CaptureDR
 shiftDRflag = FALSE;
 when ShiftDR
 shiftDRflag = TRUE;

 if ZBScount != 0 then ZBSlocked = TRUE;
 when UpdateDR
 if !ZBSlocked && !shiftDRflag && ZBScount < 7 then
 ZBScount = ZBScount + 1;
 when SelectIRScan, TestLogicReset
 ZBScount = 0; ZBSlocked = FALSE;
 return state == RunTestIdle && ZBSlocked && ZBScount == 6;

Note
 If the JTAG-to-DS sequence is terminated by a entering the Test-Logic-Reset state, an SWJ-DP can immediately
detect a JTAG-to-SWD sequence.

5.3.3 SWD to Dormant switching

To switch from SWD to dormant:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures the SWD interface is in the
reset state. The target only detects the SWD-to-DS sequence when it is in the reset state.

2. Send the 16-bit SWD-to-DS select sequence on SWDIOTMS.

The 16-bit SWD-to-DS select sequence is 0b0011_1101_1100_0111, MSB first. This can be represented as either:
• 0x3DC7 transmitted MSB first.
• 0xE3BC transmitted LSB first.
5-116 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.3 Dormant operation
Figure 5-9 SWD-to-DS sequence timing

Figure 5-9 shows that the SWD-to-DS sequence begins with two SWDIOTMS LOW cycles after the line reset. No
additional SWDIOTMS LOW cycles are allowed.

5.3.4 Switching out of Dormant state

The sequence to switch out of dormant state is considerably longer to avoid it being generated accidentally by
whichever alternative protocol is in use. The sequence is long enough that it is statistically highly improbable that
it is generated any other way.

To switch out of dormant state:

1. Send at least 8 SWCLKTCK cycles with SWDIOTMS HIGH. This is to ensure the target is not in the
middle of detecting a Selection Alert sequence. The target is permitted to detect the Selection Alert sequence
even if this 8-cycle sequence is not present.

2. Send the 128-bit Selection Alert sequence on SWDIOTMS.

3. Send 4 SWCLKTCK cycles with SWDIOTMS LOW. The target must ignore the value on SWDIOTMS
during these cycles.

4. Send the required activation code sequence on SWDIOTMS.

5. Send a sequence to place the target into a known state

• If selecting JTAG, the target is in either the Run/Test Idle or Test-Logic-Reset states, see the Note that
follows Figure 5-5 on page 5-113 for more information. ARM recommends that the debugger sends
one SWCLKTCK cycle with SWDIOTMS LOW. This ensures that the TAP state machine is in the
Run-Test/Idle state. Alternatively, send at least five SWCLKTCK cycles with SWDIOTMS HIGH
to ensure the TAP state machine is in the Test-Logic/Reset state.

• If selecting SWD, the target is in the protocol error state. The debugger must send at least 50
SWCLKTCK cycles with SWDIOTMS HIGH. This ensures the SWD interface is in the line reset
state.

Note
 The Activation code selects a protocol, not a target. In a multidrop Serial Wire Debug system with multiple

SW-DPs, a target must then be selected. For more information, see Target selection protocol, SWD protocol
version 2 on page 4-105.

The Selection Alert sequence, in binary, is

0100_1001_1100_1111_1001_0000_0100_0110_1010_1001_1011_0100_1010_0001_0110_0001_
1001_0111_1111_0101_1011_1011_1100_0111_0100_0101_0111_0000_0011_1101_1001_1000

This sequence is sent MSB first. This can be represented as either:
• 0x49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first.
• 0x19BC0EA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.

At least
50 clocks with
SWDIOTMS

HIGH

0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1

SWD-to-DS sequence

SWCLKTCK

SWDIOTMS
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 5-117
ID080813 Non-Confidential

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.3 Dormant operation
Figure 5-10 Selection Alert sequence

Note
 The Selection Alert sequence can be generated by implementing a Linear Feedback Shift Register (LFSR)
implementing feedback on bits 6, 5, 3 and 0, starting in the state 0b1001001 and shifting out one bit from bit 0 each
cycle. The sequence starts with a zero start bit and continues with the output of the LFSR.

Figure 5-11 LSFR for generating Selection Alert sequence

The value of the activation code depends on whether SWD or JTAG operation is to be requested. Table 5-1 defines
the recommended activation codes a debugger must use for JTAG devices, SW-DP devices and SWJ-DP devices.
These sequences are sent MSB first.

SWCLKTCK

SWDIOTMS

At least 8 cycles
with SWDIOTMS

HIGH

0 1 0 0 1 0 ... 0 1 1 0 0 0

Selection Alert sequence
(128 cycles)

(0)(0) (0) (0)

4 cycles with
SWDIOTMS

LOW

Activation
code

Selected
technology

1 0 0 1 10 0

Selection
Alert

sequence

Table 5-1 Activation codes

Activation code Value, MSB first

Devices activated

Protocol
selectedOther

JTAG

ADIv5 Debug Ports

JTAG SW SWJ

JTAG-Serial 0b0000_0000_0000 Yes Yes No Yes JTAG

ARM CoreSight SW-DP 0b0101_1000 No No Yes Yes SWD

ARM CoreSight JTAG-DP 0b0101_0000 No Yes No Yes JTAG
5-118 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.3 Dormant operation
JTAG online activation codes

For compatibility with other standards, all JTAG devices that implement dormant state using the ADIv5 defined
selection alert sequence, must recognize other sequences as valid JTAG-Serial activation codes.

Figure 5-12 shows, as a state diagram, the sequence that a JTAG device must recognize.

Figure 5-12 Dormant to JTAG state diagram

Each of the bit-strings shown in Figure 5-12 are received MSB first. The transition out of state G2 requires a reset
of the JTAG TAP, but otherwise returns to dormant state. For more information on this sequence, contact ARM.

Note
 ADIv5 does not define any other activation codes, but also does not prohibit an implementation from recognizing
other activation codes for compatibility with other standards. Implementations can also use alternative selection
alert mechanisms. Debuggers can generate multiple selection alert sequences to alert multiple devices, and then use
the common activation codes to select which devices to activate.

Dormant A

<128-bit-seq>

B

xxxx

C

00x0 00x

E

x

1

0

x

other

1

0

0

0

1

JTAG-Sel

x

Selection Alert Sequence Extended JTAG Activation Code

0101 xxxx
ARM CoreSight
activation codes

D2

D1

F2

F1

G1

G21 xxxxxxxx xxxxxxxx xxxxxxxx
JTAG TAP

reset
(see text)

x

ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 5-119
ID080813 Non-Confidential

5 The Serial Wire/JTAG Debug Port (SWJ-DP)
5.4 Restriction on switching
5.4 Restriction on switching
A debugger must not mix JTAG-DP and SW-DP reads and writes of DAP registers in a single debug session. A
single debug session is defined as from when a debugger connection is made with the system in a reset state through
to the debugger connection being broken. At the start of a debug session, the state of the target is essentially
UNKNOWN.

Attempting to mix JTAG-DP and SW-DP reads and writes of DAP registers while any component of the DAP is
active can have unpredictable results.

A powerup reset cycle might be required to reset the DAP before a change in active Data Link protocol. However,
this is not required when switching between the active protocol and dormant state.
5-120 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 6
The Access Port (AP)

A Debug Access Port can include multiple Access Ports. ARM provides two AP definitions, but other designers
might implement additional APs. This chapter gives an overview of Access Ports, and describes the features that
must be implemented in every Access Port.

This chapter contains the following sections:
• Overview of Access Ports (APs) on page 6-122.
• Selecting and accessing an AP on page 6-123.
• The Programmers’ Model for Access Port (AP) registers on page 6-124.

Note
 The following chapters give more information about APs:
• Chapter 7 The Memory Access Port (MEM-AP).
• Chapter 8 The JTAG Access Port (JTAG-AP).
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 6-121
ID080813 Non-Confidential

6 The Access Port (AP)
6.1 Overview of Access Ports (APs)
6.1 Overview of Access Ports (APs)
There are two types of Access Port defined by this ADIv5 specification:
• The Memory Access Port (MEM-AP).
• The JTAG Access Port (JTAG-AP).

A DAP might have multiple Access Ports, and these can be a mixture of types.

Note
 • This Architecture Specification also permits a DAP to include additional Access Port types. A debugger must

be able to recognize any AP, and must ignore any AP that it does not understand.

• If a DAP has only one Access Port this can be a Memory Access Port, a JTAG Access Port, or an additional
Access Port, as described in this note. This specification does not require a DAP to include one of the APs
that it defines.

The ADIv5 specification requires every Access Port to follow a common identification model. This requirement
applies to the MEM-AP and JTAG-AP implementations defined by ARM, to any future AP implementations by
ARM, and to any Access Ports that might be implemented by any third party.

The identification model requires every AP to implement an Identification Register:
• The format of the Identification Register is defined by the ADIv5 specification.
• The Identification Register must be implemented at offset 0xFC in the register space.

AP register mapping, and the format of the Identification Register, are described in The Programmers’ Model for
Access Port (AP) registers on page 6-124.

It is also required that any Access Port supports accesses from the implemented Debug Port, as described in Using
the Access Port to access debug resources on page 1-27. A summary of how to access an AP is given in Selecting
and accessing an AP on page 6-123.

There are no other requirements for APs in the ADIv5 specifications. All features provided by an AP can be
IMPLEMENTATION DEFINED.
6-122 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

6 The Access Port (AP)
6.2 Selecting and accessing an AP
6.2 Selecting and accessing an AP
A full description of how APs are selected and accessed is given in Using the Access Port to access debug resources
on page 1-27. This section summarizes that information.

In any APACC access, to a MEM-AP, to a JTAG-AP or to an AP not defined by this specification:

• Values held in SELECT determine:

— Which AP is accessed.

— Which four-register bank of AP registers is accessed. This information is passed as the A[7:4] field of
the AP access.

• The A[3:2] field of the APACC access determines which AP register, within the selected four-register bank,
is accessed.

• The RnW bit of the APACC access determines whether the AP register access is a read access or a write
access.

For more information about APACC accesses from a JTAG-DP, see DPACC and APACC, the JTAG-DP DPAccess
register and AP Access register on page 3-81.

For more information about APACC accesses from a SW-DP, see Serial Wire Debug protocol operation on
page 4-93.

APACC accesses to a MEM-AP are shown in Figure 7-1 on page 7-129.

APACC accesses to a JTAG-AP are shown in Figure 8-1 on page 8-162.

6.2.1 Stalling accesses

Access Port interfaces can support stalling accesses. These enable the AP to be connected to slow devices, such as
a memory system or a long JTAG scan chain. In this way, the DAP can put an AP access into a pending state, and
the access does not have to complete within a fixed number of cycles. This is important because in many cases an
AP access cannot complete until the associated memory access or JTAG scan has completed. For more information
see:
• Stalling accesses on page 7-134, for stalling accesses to a MEM-AP.
• Stalling accesses on page 8-167, for stalling accesses to a JTAG-AP.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 6-123
ID080813 Non-Confidential

6 The Access Port (AP)
6.3 The Programmers’ Model for Access Port (AP) registers
6.3 The Programmers’ Model for Access Port (AP) registers

An Access Port (AP) implements 32-bit registers. These are mapped into a 256-byte address space. Using the Access
Port to access debug resources on page 1-27 summarizes the programmers’ model for accessing these registers.

Additional information about the AP programmers’ model is given in the chapters that describe the two types of AP:
• Chapter 7 The Memory Access Port (MEM-AP).
• Chapter 8 The JTAG Access Port (JTAG-AP).

ADIv5 requires every AP to implement an AP Identification Register, IDR, at offset 0xFC. This is the last register in
the AP register space, and is described in IDR, Identification Register.

The IDR is the only register that must be implemented by all Access Ports. This is summarized in Table 6-1.

See Reserved addresses on page 6-126 for the requirements for reserved registers.

6.3.1 IDR, Identification Register

DP architecture The IDR is defined and implemented in DPv0, DPv1, and DPv2.

Purpose The Identification Register identifies the Access Port. An IDR value of zero indicates that
there is no AP present.

Attributes The IDR is:
• A read-only register.
• Accessed at offset 0xFC of the AP register space.

The IDR bit assignments are:

Revision, bits[31:28]

Starts at 0x0 for the first implementation of an AP design, and increments by 1 on each major or
minor revision of the design. Major design revisions introduce functionality changes, minor
revisions are bug fixes.

JEP106 continuation code, bits[27:24]

Code that identifies the designer of the AP. See JEP106 identity and continuation codes on
page 6-125.

For an AP designed by ARM this field has the value 0x4.

JEP106 identity code, bits[23:17]

Code that identifies the designer of the AP. See JEP106 identity and continuation codes on
page 6-125.

For an AP designed by ARM this field has the value 0x3B.

Table 6-1 Summary of the common Access Port (AP) register

Address Name Access Description Reset value

0xFC IDR RO AP Identification Register IMPLEMENTATION DEFINED

0010Revision

31 28 27 24 23 17 16 15 8 7 4 3 0

0 1 1 1 0 1 1 Class Reserved, SBZ Variant Type

Continuation
code

Identity
code

JEP106, ARM values

AP Identification

1213
6-124 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

6 The Access Port (AP)
6.3 The Programmers’ Model for Access Port (AP) registers
Class, bits[16:13]

Defines the class of AP. An AP belongs to a class if it follows a programmers’ model defined as part
of the ADIv5 specification or extensions to it. This bit field can have the following values:
0b0000 No defined class.
0b1000 Memory Access Port. See Chapter 7 The Memory Access Port (MEM-AP).

Bits[12:8] Reserved, SBZ. This field is reserved for future ID register fields. If a debugger reads a non-zero
value in this field, it must treat the AP as unidentifiable.

AP identification, bits[7:0]

Access Port Identification. This bit field identifies the AP implementation. Each AP designer must
maintain their own list of implementations and associated AP Identification codes.

In an AP implementation by ARM this field is subdivided as:

Variant, bits[7:4] Identifies different AP implementations of the same Type.

Type, bits[3:0] Indicates the type of bus, or other connection, that connects to the AP. See
ARM AP Identification types.

JEP106 identity and continuation codes

The JEP106 codes are assigned by JEDEC and identify the manufacturer of a device. However, in the AP
Identification register they identify the designer of the AP. The following sections describe registers that include
JEP106 codes. Each register description clarifies the meaning of its use of the JEP106 codes:
• IDCODE, the JTAG TAP ID register on page 3-79.
• DPIDR, Debug Port Identification Register on page 2-54.
• TARGETID, Target Identification register on page 2-60.
• The Peripheral ID Registers on page 9-191.

An implementer of an ARM MEM-AP or JTAG-AP must not change the AP Identification Register values from
those given in IDR, Identification Register on page 6-124.

Note
 • For backwards compatibility, debuggers must treat a JEP106 field of zero as indicating an AP designed by

ARM. This encoding was used in early implementations of the Debug Access Port. In such an
implementation, the Revision and Class fields also Read As Zero.

• DAP implementations that comply with the ADIv5 specification must use the JEP106 code and include
Revision and Class fields.

ARM AP Identification types

Table 6-2 lists the possible values of the Type field for an AP designed by ARM. It also shows the value of the Class
bit that corresponds to each Type value.

Table 6-2 ADIv5 AP Identification types for an AP designed by ARM

Typea Connection to AP Classb Notes

0x0 JTAG connection 0b0000 Not used by MEM-AP, indicates JTAG-AP.
Variant field, bits [7:4] of IDR, must be non-zero.

0x1 AMBA AHB bus 0b1000 -
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 6-125
ID080813 Non-Confidential

6 The Access Port (AP)
6.3 The Programmers’ Model for Access Port (AP) registers
6.3.2 Reserved addresses

For all APs, reserved registers must be RES0.

This applies to all APs, including any implemented by companies other than ARM.

0x2 AMBA APB2 or APB3 bus 0b1000 -

0x4 AMBA AXI3 or AXI4 bus, with optional ACE-Lite
support

0b1000 Not defined in issue A of this document.

Otherc Reserved - -

a. Bits [3:0] of the IDR.
b. Bits [16:13] of the IDR.
c. Any value other than 0x0, 0x1, 0x2, or 0x4.

Table 6-2 ADIv5 AP Identification types for an AP designed by ARM (continued)

Typea Connection to AP Classb Notes
6-126 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 7
The Memory Access Port (MEM-AP)

This chapter describes the implementation of the Memory Access Port (MEM-AP), and how a MEM-AP provides
the Debug Port connection to a debug component.

This chapter contains the following sections:
• About the function of a Memory Access Port (MEM-AP) on page 7-128.
• MEM-AP functions on page 7-132.
• Implementing a MEM-AP on page 7-142.
• MEM-AP examples of pushed-verify and pushed-compare on page 7-144.
• MEM-AP register summary on page 7-146.
• MEM-AP register descriptions on page 7-147.

Note
 Chapter 6 The Access Port (AP) gives additional information about APs.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-127
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.1 About the function of a Memory Access Port (MEM-AP)
7.1 About the function of a Memory Access Port (MEM-AP)
A MEM-AP provides a DAP with access to a memory subsystem. Another way of describing the operation of a
MEM-AP is that:
• A debug component implements a memory-mapped abstraction of a set of resources.
• The MEM-AP provides AP access to those resources.

However, an access to a MEM-AP might only access a register within the MEM-AP, without generating a memory
access.

7.1.1 The programmers’ model for debug register access

The programmers’ model for debug registers is a memory map. Although use of a memory bus system is not
required, this abstraction enables the same programming model to be used for accessing debug registers and system
memory. With this model, the debug registers might be implemented as a peripheral within the system memory
space.

The debug registers in a debug component occupy one or more 4KB blocks of address space, and a system might
contain several such debug components.

Although the architecture specifications permits a debug component to implement multiple 4KB blocks, most
components implement a single block.

Note
 Although a component might occupy only 4KB of address space, ARM recommends that the base address of each
component is aligned to the largest translation granule supported by any processor that can access the component.
For an ARMv8 processor, this might be 64KB.

Debug register files

A 4KB block of address space accessible from an Access Port can be referred to as a debug register file. A single
Access Port can access multiple debug register files. There is a base standard for debug register file identification,
and debuggers must be able to recognize and ignore register files that they do not support.

A single Memory Access Port can access a mixture of system memory and debug register files.

ROM tables

A ROM table is a special case of a debug register file. It is a 4KB memory block that identifies a system.

If there is only one debug component in the system to which the MEM-AP is connected then the ROM table is
optional. However, because the ROM table contains a unique system identifier that identifies the complete SoC to
the debugger, an implementation might choose to include a ROM table even if there is only one other debug
component in the system.

When a system includes more than one debug component it must include a ROM table.

Chapter 10 ROM Tables describes ROM tables.

7.1.2 Selecting and accessing the MEM-AP

Figure 7-1 on page 7-129 shows the implementation of a MEM-AP, and how the MEM-AP connects the DP to the
debug components. Two example debug components are shown, a processor core and an Embedded Trace
Macrocell (ETM), together with a ROM table. APACC accesses to the DP are passed to the MEM-AP.

The method of selecting an AP, and selecting a specific register within the selected AP, is the same for MEM-APs
and JTAG-APs. This is summarized in Selecting and accessing an AP on page 6-123.
7-128 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.1 About the function of a Memory Access Port (MEM-AP)
Figure 7-1 MEM-AP connecting the DP to debug components

7.1.3 The MEM-AP registers

The MEM-AP registers, and the memory map of the MEM-AP, are described in detail in MEM-AP register
descriptions on page 7-147. However, you require a basic knowledge of the functions of these registers to
understand the operation of the MEM-AP. The MEM-AP registers are shown in Figure 7-1. To summarize, these
registers are:

Control/Status Word register, CSW

The CSW holds control and status information for the MEM-AP.

Transfer Address Register, TAR

The TAR holds the address for the next access to the memory system, or set of debug resources,
connected to the MEM-AP. The MEM-AP can be configured so that the TAR is incremented
automatically after each memory access. Reading or writing to the TAR does not cause a memory
access.

DPACC

Note: Register field widths are not to scale.
 For example, RnW is a single bit.

APACC
RnWA[3:2]Data[31:0]

A[7:4] RnWA[3:2]Data[31:0]

Generic
Debug Port

(DP)

APSEL
decode

Debug
address
decode

Addr[31:2] RnWData[31:0]

Pr
oc

es
so

r
4K

B
bl

oc
k

R
eg

is
te

r 0
0x

00
0

R
eg

is
te

r 1
0x

00
4

R
eg

is
te

r 2
0x

00
8

R
eg

is
te

r 3
0x

00
C

R
eg

is
te

r 1
02

3
0x

FF
C

ET
M

4K
B

bl
oc

k

R
eg

is
te

r 0
0x

00
0

R
eg

is
te

r 1
0x

00
4

R
eg

is
te

r 2
0x

00
8

R
eg

is
te

r 3
0x

00
C

R
eg

is
te

r 1
02

3
0x

FF
C

R
O

M
 T

ab
le

4K
B

bl
oc

k

Pr
oc

es
so

r a
dd

re
ss

0x
00

0

ET
M

 a
dd

re
ss

0x
00

4

0x
00

00
00

00
0x

00
8

R
es

er
ve

d
0x

00
C

D
eb

ug
 P

or
t

AP
 A

cc
es

s
M

em
or

y
Ac

ce
ss

 P
or

t
R

es
ou

rc
e-

sp
ec

ifi
c

tra
ns

po
rt

D
eb

ug
 R

eg
is

te
r F

ile
s

AP Access

Access
Port
(AP)

Resource-
specific
Access

Resource
Debug

Registers

RnWA[3:2]Data[31:0]

A[7:4] selects the register bank
A[3:2] selects register within bank

Address
incrementer

Ba
nk

ed
 M

EM
-A

P
re

gi
st

er
s

R
es

er
ve

d

Ba
nk

 0
x
F

0
x
F
0

0
x
F
4

0
x
F
8

0
x
F
C

C
on

fig
ur

at
io

n
R

eg
. (

C
FG

)

D
eb

ug
 B

as
e

Ad
dr

. (
BA

SE
)

Id
en

tif
ic

at
io

n
R

eg
is

te
r (

ID
R

)

Ba
nk

ed
 D

at
a

0
(B

D
0)

Ba
nk

 0
x
1

0
x
1
0

0
x
1
4

0
x
1
8

0
x
1
C

Ba
nk

ed
 D

at
a

1
(B

D
1)

Ba
nk

ed
 D

at
a

2
(B

D
2)

Ba
nk

ed
 D

at
a

3
(B

D
3)

C
on

tro
l/S

ta
tu

s
W

or
d

(C
SW

)

Ba
nk

 0
x
0

0
x
0
0

Tr
an

sf
er

 A
dd

re
ss

 (T
AR

)
0
x
0
4

R
es

er
ve

d
0
x
0
8

D
at

a
R

ea
d/

W
rit

e
(D

R
W

)
0
x
0
C

Memory
Access Port
(MEM-AP)

‡ This is only a partial
view of the DP
registers, refer to the
DP descriptions for
more information.

D
P

R
eg

is
te

rs
 ‡

C
on

tro
l/S

ta
tu

s
(C

TR
L/

ST
AT

)

D
AT

A
LI

N
K

D
EF

IN
ED

AP
 S

el
ec

t (
SE

LE
C

T)

R
ea

d
Bu

ffe
r (

R
D

BU
FF

)

0
x
0
0

0
x
0
4

0
x
0
8

0
x
0
C

Data Link Interface

DP Access

AP
AC

C

Ac
ce

ss
 R

es
ul

t a
nd

 S
ta

tu
s

D
PA

C
C

Debug
Port
(DP)
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-129
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.1 About the function of a Memory Access Port (MEM-AP)
Data Read/Write register, DRW

The DRW is used for memory accesses:

• Writing to the DRW initiates a write to the address specified by the TAR.

• Reading from the DRW initiates a read from the address specified by the TAR. When the read
access completes, the value is returned from the DRW.

Banked Data Registers, BD0 to BD3

The Banked Data Registers, BD0, provide direct read or write access to a block of four words of
memory, starting at the address specified in the TAR:
• Accessing BD0 accesses (TAR[31:4] << 4) in memory.
• Accessing BD1 accesses ((TAR[31:4] << 4) + 0x4) in memory.
• Accessing BD2 accesses ((TAR[31:4] << 4) + 0x8) in memory.
• Accessing BD3 accesses ((TAR[31:4] << 4) + 0xC) in memory.

The value in TAR[3:0] is ignored in constructing the access address:
• Bits[3:2] of the access address depend solely on which of the four banked data registers is

being accessed.
• Bits[1:0] of the access is always zero.

Configuration register, CFG

The CFG register hold information about the configuration of the MEM-AP.

Debug Base Address register, BASE

The BASE register is a pointer into the connected memory system. It points to one of:
• The start of a set of debug registers for the single connected debug component.
• The start of a ROM table that describes the connected debug components.

Identification Register, IDR

The IDR identifies the MEM-AP.

Note
 This brief summary of the MEM-AP registers does not include cross-references to the detailed register descriptions.
For more information about these registers, see MEM-AP register descriptions on page 7-147.

7.1.4 MEM-AP register accesses and memory accesses

Note
 In this section, an access to the debug resources is described as a memory access.

This section summarizes all of the possible APACC accesses to a MEM-AP. This means it covers accesses to each
of the MEM-AP registers. These accesses are summarized in the following sections:
• Accesses that do not initiate a memory access.
• Accesses that initiate a memory access on page 7-131.
• Accesses that support pushed transactions and the transaction counter on page 7-131.

Accesses that do not initiate a memory access

APACC accesses to the following MEM-AP registers do not cause a memory access:
• The Control/Status Word register, CSW.
• The Transfer Address Register, TAR.
• The Configuration register, CFG.
7-130 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.1 About the function of a Memory Access Port (MEM-AP)
• The Debug Base Address register, BASE.
• The Identification Register, IDR.

Accesses that initiate a memory access

This section introduces the APACC accesses to MEM-AP registers that initiate one or more memory accesses.
These APACC accesses are:

• Accesses to the DRW register. A memory access is initiated, using the address held in the TAR.

• Accesses to one of the Banked Data Registers, BD0.

The address used for the memory access depends on which Banked Data Register is accessed.

However, if the MEM-AP implementation includes the Large Data Extension, and CSW.Size specifies a transfer
size that is larger than word, some DRW and BD0 accesses do not initiate a memory access, see Use of the DRW
register with the MEM-AP Large Data Extension on page 7-156 and Use of the BD registers with the MEM-AP
Large Data Extension on page 7-152.

In some cases, a single AP transaction initiates more than one memory access. The two cases where this happens are:

• If the transaction counter is set. See The transaction counter on page 2-38.

• If packed transfers are supported and enabled and the transfer size is smaller than word. See Packed transfers
on page 7-138.

For more information see Packed transfers and the transaction counter on page 7-139.

If an AP transaction initiates one or more memory accesses, the AP transaction does not complete until one of the
following occurs:

• All of the memory accesses complete successfully.

• A memory access terminates with an error response. In this case, any outstanding accesses to the debug
component are abandoned.

• The AP accesses are aborted using the ABORT register.

Accesses that support pushed transactions and the transaction counter

A MEM-AP supports pushed transactions and sequences of transactions to the following registers only:
• DRW, Data Read/Write register.
• Banked Data registers 0-3, see BD0-BD3, Banked Data registers 0-3 on page 7-150.

For more information see:
• Pushed-compare and pushed-verify operations on page 2-36.
• The transaction counter on page 2-38.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-131
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
7.2 MEM-AP functions
This section describes the functions of a MEM-AP. These functions are controlled by the MEM-AP registers, as
described in MEM-AP register descriptions on page 7-147.

The following sections describe functions that a MEM-AP must support:
• Enabling access to the connected debug device or memory system.
• Auto-incrementing the Transfer Address Register (TAR).
• Stalling accesses on page 7-134.
• Response to debug component errors on page 7-135.

The following sections describe functions that an MEM-AP implementation might support. In other words, it is
IMPLEMENTATION DEFINED whether a particular MEM-AP supports these features.
• Variable access size for memory accesses on page 7-136.
• Byte lanes on page 7-137.
• Packed transfers on page 7-138.
• Slave memory port and software access control on page 7-140.
• Implementing a MEM-AP on page 7-142.

Note
 Some of the IMPLEMENTATION DEFINED functions are inter-dependent. These dependencies are summarized in
MEM-AP implementation requirements on page 7-142.

7.2.1 Enabling access to the connected debug device or memory system

Access to the debug device or memory system is controlled by Device Enable signal, DEVICEEN. This signal is
an input to the Debug Access Port (DAP). DEVICEEN is normally tied HIGH, so that it is asserted even when the
Debug Enable signal, DBGEN, is LOW. This means that the MEM-AP can be programmed even when debug is
disabled.

The current value of the DEVICEEN signal is shown by the read-only CSW.DeviceEn bit.

The DeviceEn flag shows whether the MEM-AP is able to issue transactions to the memory system to which it is
connected. When DeviceEn is 0, no transactions can be issued to any address. This means that any access to the
Data Read/Write Register or to any of the Banked Data Registers:

• Immediately causes the CTRL/STAT.STICKYERR bit to be set to 1.

• Has no other effect. The access does not cause a MEM-AP transaction.

If there is no DEVICEEN signal for a device then the DeviceEn flag must Read-as-One.

7.2.2 Auto-incrementing the Transfer Address Register (TAR)

As indicated in The MEM-AP registers on page 7-129, the Transfer Address Register (TAR) holds an address in the
address map of the debug resource connected to the MEM-AP. This address is used as:

• The address in the debug component memory map of read or write accesses initiated by a read or write of the
Data Read/Write Register.

• The base address determines the address in the debug component memory map of read or write accesses
initiated by a read or write of one of the Banked Data Registers, as described in Accesses that initiate a
memory access on page 7-131.

Software can configure the MEM-AP to auto-increment the TAR on every read or write access to the Data
Read/Write Register. Auto-incrementing is controlled by the CSW.AddrInc field.
7-132 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
Note
 Accesses to the Banked Data Registers never cause the TAR to auto-increment. The AddrInc field has no effect on
accesses to the Banked Data Registers.

The permitted values of the AddrInc field, and their meanings, are summarized in Table 7-1.

When auto address incrementing is enabled, the address in the TAR is updated whenever an access to the DRW is
successful. However, if the DRW transaction completes with an error response, or the transaction is aborted, the
TAR is not incremented.

In more detail, the possible settings of this field are:

Auto-increment off

No auto-incrementing occurs. The value in the TAR is unchanged after any Data Read/Write
Register access.

Increment single

After a successful Data Read/Write Register access, the address in the TAR is incremented by the
size of the access. For information about different access sizes see Variable access size for memory
accesses on page 7-136.

Note
 It is IMPLEMENTATION DEFINED whether a MEM-AP supports transfer sizes other than Word. If a

MEM-AP only supports word transfers then, when Increment single is selected, the TAR always
increments by four after a successful DRW transaction.

Increment packed

If packed transfers are supported, setting AddrInc to 0b10, Increment packed, enables packed
transfer operation. Packed transfers are described in more detail in Packed transfers on page 7-138.
In brief, with packed transfers multiple halfword or byte memory accesses are packed into a single
word APACC access.

It is IMPLEMENTATION DEFINED whether a MEM-AP supports packed transfers, but:

• An implementation that supports transfers smaller than word must support packed transfers.

• Packed transfers cannot be supported on a MEM-AP that only supports whole-word
transfers.

Table 7-1 Summary of AddrInc field values

AddrInc value Description Support required?

0b00 Auto-increment off Always.

0b01 Increment single Always.

0b10 Increment packed If Packed transfers are supported. See Packed transfers on page 7-138.
If Packed transfers are not supported, the value 0b10 selects the Auto-increment off mode and
reading the AddrInc value returns 0b00.

0b11 Reserved -
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-133
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
When packed transfer operation is enabled and the transfer size is smaller than word, each DRW
access causes multiple memory accesses, and the value in the TAR is auto-incremented correctly
after each memory access. For example:

• For packed accesses with Size set to halfword (16-bits), each DRW read access generates two
data bus transfers. The value in the TAR is incremented by 0x2 after each successful data bus
transfer. As described in Packed transfers on page 7-138, the two halfword values from the
two reads are packed into a single 32-bit word that is returned through the APACC.

• With packed accesses enabled and Size set to byte, a single DRW write operation generates
four 8-bit data bus transfers, and the TAR is incremented by 0x1 after each of these transfers.

Automatic address increment is only guaranteed to operate on the bottom 10-bits of the address held in the TAR.
Auto address incrementing of bit [10] and beyond is IMPLEMENTATION DEFINED. This means that auto address
incrementing at a 1KB boundary is IMPLEMENTATION DEFINED. For example, if the TAR is set to 0x14A4, and the
access size is word, successive accesses to the DRW increment TAR to 0x14A8, 0x14A, and in steps of 4 bytes up to
the end of the 1KB range at 0x17FC. At this point, the auto-increment behavior on the next DRW access is
IMPLEMENTATION DEFINED.

7.2.3 Stalling accesses

A MEM-AP must support stalling accesses, to enable connection to slow devices such as a slow memory system.
This means that an access can be issued by the DP but does not have to complete within a fixed number of cycles.
This is important because a MEM-AP access to the DRW register, or to one of the Banked Data Registers BD0, does
not complete until the required memory access completes.

An example of the importance of stalling accesses is given by the mode of operation, specified by the ARMv7
Debug Architecture, where accesses to the Data Transfer Registers (DTRs) and Instruction Transfer Register (ITR)
do not complete until the processor is ready to accept new data. The following sequence describes how a processor
that complies with the ARMv7 Debug Architecture, and an ADIv5 DAP that comprises a MEM-AP and a JTAG-DP,
might co-operate to inform the debugger that it has to retry an access because of such a condition.

1. The initial conditions are:

• The processor core is idle and configured to stall accesses to its ITR and DTRs when it is not ready to
accept new data.

• The DP SELECT register addresses a MEM-AP with a connection to the processor.

• The AP TAR addresses the ITR of the processor core.

2. The debugger writes a first instruction to the ITR. The process is:

• Perform an AP write to DRW with the first instruction to execute:
— The AP is ready, so an OK/FAULT ACK is returned at the Capture-DR state.
— At the Update-DR state the DP initiates a transfer to the AP.

• The TAR is addressing the ITR on the processor, and the AP access is a write to the DRW. Therefore,
the AP initiates a write to the ITR through its connection to the processor.

• The core accepts the transfer, because the processor is idle and the instruction complete flag,
InstrCompl, is set to 1.

• The transfer completes.

• The core starts to execute the instruction from the ITR. InstrCompl = 0.

Note
 The ACK of OK/FAULT is issued before the transfer is accepted by the core.

3. The debugger writes a second instruction to the ITR:

• It performs an AP write to DRW with the next instruction to execute:
— The AP is ready, so an OK/FAULT ACK is returned at the Capture-DR state.
— At the Update-DR state the DP initiates a transfer to the AP.
7-134 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
• The TAR has not changed, therefore, the AP initiates a second write to the ITR through its connection
to the processor.

• The core is still executing the first instruction (InstrCompl = 0) and cannot accept the transfer.

• The transfer can not complete, and the AP remains busy.

Note
 The ACK value returned is OK/FAULT because the AP is ready to accept a new transfer. The AP does not

know that the core is not able to accept the transfer until it attempts the transfer.

4. The debugger writes a third instruction to the ITR:

• It performs an AP write to DRW with the next instruction to execute:
— The AP is not ready, so a WAIT ACK is returned at the Capture-DR state.
— At the Update-DR state the DP discards the AP access request, because the AP was not ready

at Capture-DR.
The debugger might now retry the AP write a number of times, but as long as the first instruction has
not completed, the DP returns a WAIT ACK at the Capture-DR state

5. At some point the core completes the first instruction:

• InstrCompl becomes 1.

• The External Debug Interface on the core is now ready to accept the second instruction.

• The AP transfer, from stage 3, is accepted by the core, and the second instruction is written to the ITR.

• The core starts to execute the second instruction. InstrCompl = 0, again.

• Because the AP transfer is complete, the AP returns to the ready state.

6. The debugger retries writing the third instruction to the ITR:

• It performs an AP write to DRW with the third instruction:
— The AP is ready, so an OK/FAULT ACK is returned at the Capture-DR state.
— At the Update-DR state the DP initiates a transfer to the AP.

• The TAR has not changed, therefore, the AP initiates another write to the ITR through its connection
to the processor.

• The response to the AP write attempt depends on whether the processor has finished processing the
last instruction written to the ITR:

— If the processor is idle, with InstrCompl = 1, the AP transfer completes, writing a new
instruction to the ITR. The core starts to execute the new instruction, and the AP returns to the
ready state. This stage, stage 6, of the debug session is repeated for the next instruction from the
debugger.

— If the processor is still processing the previous instruction InstrCompl = 0. The processor cannot
accept the transfer and the AP remains busy. The debug session continues from stage 4.

7.2.4 Response to debug component errors

On an error response from a debug component, the MEM-AP returns an error to the DP. As a result of this, the DP
sets the STICKYERR flag, see Sticky flags and DP error responses on page 2-34.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-135
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
7.2.5 Variable access size for memory accesses

It is IMPLEMENTATION DEFINED whether an MEM-AP supports memory access sizes other than word (32-bit).

If the MEM-AP Large Data Extension is not supported, then when a MEM-AP implementation supports different
sized accesses, it must support word, halfword and byte accesses.

Note
 The ARM Debug Interface specification does not require a MEM-AP to support accesses other than word. However
if a MEM-AP can access other memory, such as system memory, ARM recommends that it supports other access
sizes.

For more information see MEM-AP implementation requirements on page 7-142.

The access size is controlled by the CSW.Size field. Table 7-2 shows the access size options.

When a Size smaller than word is used, the resulting data access is returned in byte lanes. See Byte lanes on
page 7-137 for more information.

Caution
 Behavior is UNPREDICTABLE if a Banked Data Register is accessed with the Size field set to any size other than word
or doubleword.

Table 7-2 Size field values when the MEM-AP supports different access sizes

Size value, CSW.Size Memory access size Support required?

0b000 Byte (8-bits) No

0b001 Halfword (16-bits) No

0b010 Word (32-bits) Yesa

a. On a MEM-AP implementation that does not support access sizes other than word, the
Size field is read-only, and always returns the value 0b010.

0b011b

b. Supported by the MEM-AP Large Data Extension, see MEM-AP Large Data Extension
on page 7-143. If the extension is not implemented, this value is reserved.

Doubleword (64-bits) No

0b100b 128-bits No

0b101b 256-bits No

0b110 - 0b111 Reserved -
7-136 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
7.2.6 Byte lanes

With a MEM-AP that supports memory transfers of less than 32-bits, when packed transfers are not enabled, the
data transfers between the DRW and the debug component are byte-laned as described in this section. This
byte-laning depends on:

• The memory transfer size, specified by the CSW.Size field, see Variable access size for memory accesses on
page 7-136.

• The bottom two bits of the TAR, TAR[1:0].

If supported, packed transfers also use byte laning for byte and halfword transfers. This is described in Packed
transfers on page 7-138.

Table 7-3 shows how the DRW data is byte-laned.

The IMPLEMENTATION DEFINED behavior shown in Table 7-3 is one of the following:

• Unaligned portions of the address are ignored. For example, an unaligned word access to 0x8003 accesses the
32-bit value at 0x8000.

• The access is faulted, and the CTRL/STAT.STICKYERR bit is set to 1.

• The access is made to the unaligned address specified in TAR[31:0], and the result packed as if packed
transfers were enabled, see Packed transfers on page 7-138. The data transfer might be split into more than
one memory access across the connection to the debug component.

For example, an unaligned word access to 0x8003 accesses the bytes at 0x8003, 0x8004, 0x8005 and 0x8006. This
might generate four byte-wide accesses to memory, or the accesses to bytes 0x8004 and 0x8005 might be
performed as a single halfword (16-bit) access.

Big-endian support

The byte-laning described in this section has the least significant byte of DRW or BD0-BD3 containing data from
the lowest address, and so might be described as little-endian.

Previous versions of this manual described a variant of the MEM-AP which supported an alternative form of
byte-laning where the most significant byte of DRW or BD0-BD3 contained the byte from the lowest address,
described as big-endian. Bit[0] of the CFG register described whether the MEM-AP was little-endian or big-endian.
ADIv5.2 obsoletes such implementations.

If the target uses a big-endian memory arrangement, the external debugger must manipulate the values it passes
through the MEM-AP accordingly.

Table 7-3 Byte-laning of memory accesses from the DRW

CSW[2:0], Size TAR[1:0] Access data

0b000, byte 0b00 DRW[7:0]

0b01 DRW[15:8]

0b10 DRW[23:16]

0b11 DRW[31:24]

0b001, halfword 0b00 DRW[15:0]

0b10 DRW[31:16]

0bX1 IMPLEMENTATION DEFINED

0b010, word 0b00 DRW[31:0]

0b1X, 0bX1 IMPLEMENTATION DEFINED
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-137
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
7.2.7 Packed transfers

Whether a MEM-AP supports packed transfers is IMPLEMENTATION DEFINED. If packed transfers are supported they
are enabled by setting the auto address increment field, CSW.AddrInc, to 0b10, Increment packed. See
Auto-incrementing the Transfer Address Register (TAR) on page 7-132.

When packed transfers are enabled, each access to the DRW results in one of the following actions, depending on
the value of the CSW.Size field, see Variable access size for memory accesses on page 7-136:
• When CSW.Size = 0b010, word, there is a single word (32-bit) access.
• When CSW.Size = 0b001, halfword, there are two halfword (16-bit) accesses.
• When CSW.Size = 0b000, byte, there are four byte (8-bit) accesses.

Use of packed transfers with CSW.Size set to a transfer size larger than word is UNPREDICTABLE.

When packed transfers are enabled, after each successful memory access the address held in the Transfer Address
Register is automatically updated by the access size.

Accesses are always made in increasing memory address order:

• For write accesses to memory, data is unpacked from the DRW in byte-lanes that depend on the memory
address of each write access.

• For read accesses, data is packed into the DRW in byte-lanes that depend on the memory address of each read
access.

The byte lanes for data packing and unpacking are the same as those described in Table 7-3 on page 7-137. This is
shown in the following examples:
• Example 7-1, Halfword packed write operation.
• Example 7-2, Byte packed write operation.
• Example 7-3 on page 7-139, Halfword packed read operation on page 7-139.

Example 7-1 Halfword packed write operation

This example describes a single word (32-bit) write access to the DRW on a MEM-AP with the following settings:
• Size, CSW[2:0] = 0b001, to give halfword (16-bit) memory accesses.
• AddrInc, CSW[5:4] = 0b10, to give packed transfer operation.
• TAR[31:0] = 0x00000000, to define the base address of the access.

Two write transfers are made. The halfword entries in Table 7-3 on page 7-137 define the byte-laning for these
accesses. The accesses are made in the following order:

1. TAR[1]=0, so write DRW[15:0] to address 0x00000000.

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000002.

2. TAR[1]=1, so write DRW[31:16] to address 0x00000002.

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000004.

Example 7-2 Byte packed write operation

This example describes a single word (32-bit) write access to the DRW on a MEM-AP with the following settings:
• Size, CSW[2:0] = 0b000, to give byte (8-bit) memory accesses
• AddrInc, CSW[5:4] = 0b10, to give packed transfer operation
• TAR[31:0] = 0x00000002, to define the base address of the access.
7-138 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
Four write transfers are made. The byte entries in Table 7-3 on page 7-137 define the byte-laning for these accesses.
The accesses are made in the following order:
• TAR[1:0]=0b10, so write DRW[23:16] to address 0x00000002.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000003.
• TAR[1:0]=0b11, so write DRW[31:24] to address 0x00000003.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000004.
• TAR[1:0]=0b00, so write DRW[7:0] to address 0x00000004.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000005.
• TAR[1:0]=0b01, so write DRW[15:8] to address 0x00000005.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000006.

Example 7-3 Halfword packed read operation

This example describes a single word (32-bit) read access to the DRW on a MEM-AP with the following settings:
• Size, CSW[2:0]= 0b001, to give halfword (16-bit) memory accesses.
• AddrInc, CSW[5:4] = 0b10, to give packed transfer operation.
• TAR[31:0] = 0x00000002, to define the base address of the access.

Two read transfers are made. The little-endian halfword entries in Table 7-3 on page 7-137 define the byte-laning
for these accesses. The accesses are made in the following order:

• TAR[1]=1, so read a halfword from address 0x00000002, and pack this value into DRW[31:16].

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000004.

• TAR[1]=0, so read a halfword from address 0x00000004, and pack this value into DRW[15:0].

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000006.

• At this point, the complete word has been read into the DRW, and the APACC read access completes.

The descriptions given in these four examples assume that each memory access completes successfully. If any
access terminates with an error response, the sequence is halted at that point, and the MEM-AP returns an error to
the DP.

Note
 Packing occurs before any pushed comparisons are made. Pushed comparisons are made, and the STICKYCMP flag
set to 1 if necessary, only when a complete word of data has been packed into the DRW. See Pushed-compare and
pushed-verify operations on page 2-36 for a description of pushed comparisons.

Packed transfers and the transaction counter

The optional Debug Port transaction counter, described in The transaction counter on page 2-38, means that an
external debugger can make a single AP transaction request that generates multiple AP transactions. Each of these
transactions transfers a single word (32-bits) of data, and the TAR is incremented automatically between the
transactions. If the MEM-AP supports memory accesses smaller than word and packed transfers, if packed transfer
operation is enabled, each of the AP transactions driven by the transaction counter is split into multiple memory
accesses. For example, if the transaction counter is programmed to generate eight word accesses, and the MEM-AP
is programmed to make packed byte transfers, altogether 32 memory accesses are made, each of one byte.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-139
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
7.2.8 Slave memory port and software access control

The CSW register can include a debug software access enable flag, CSW.DbgSwEnable. Whether this bit is
supported is IMPLEMENTATION DEFINED. The following subsections describe the possible alternative uses of this bit:
• Using DbgSwEnable to control a slave memory port.
• Use of DbgSwEnable to control software access to debug resources.

If neither of these features is implemented then CSW.DbgSwEnable is RAZ.

If implemented, then CSW.DbgSwEnable must be ignored and treated as one if the MEM-AP device is disabled.

Caution
 If CSW.DbgSwEnable is implemented, then setting it to zero can cause software executing on the target to generate
unexpected errors, which is likely to cause it to malfunction.

ARM strongly recommends not setting CSW.DbgSwEnable to zero.

A MEM-AP can include a slave memory port, that an external bus master can use to access the area of memory
mastered by the MEM-AP. An example of this use would be permitting the external bus master to access the debug
registers of the system to which the MEM-AP is connected.

If a MEM-AP implements a slave memory port then slave memory port accesses are multiplexed with DAP
accesses. Slave memory port accesses have bit [31] of the access address forced to zero. A debug component can
use the value of this address bit to distinguish between slave memory port accesses and DAP accesses.

The BASEADDR field on page 7-149 gives more information about MEM-AP memory addressing.

Note
 The DAP can emulate a slave memory port access by setting bit [31] of the Transfer Address Register to 0.

Using DbgSwEnable to control a slave memory port

If a MEM-AP implements a slave memory port then the DbgSwEnable bit must be implemented so that the port can
be enabled or disabled. The behavior of this bit is shown in Table 7-4.

Use of DbgSwEnable to control software access to debug resources

The DbgSwEnable bit can drive a system-level signal, DBGSWENABLE. This signal gates software access to
debug resources. For example, in a processor that complies with the ARMv7 Debug Architecture, some CP14
registers are not accessible when DBGSWENABLE is LOW. For more information see the ARM Architecture
Reference Manual, ARMv7-A and ARMv7-R edition.

Table 7-4 Use of DbgSwEnable bit, bit [31], to control a slave memory port

DbgSwEnable (bit [31]) Slave memory port

0 Disabled.

1 Enabled.
This is the reset value.
7-140 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.2 MEM-AP functions
Table 7-5 shows the behavior of the DbgSwEnable bit when DBGSWENABLE is implemented.

Table 7-5 Use of DbgSwEnable bit, bit [31], to control the DBGSWENABLE signal

DbgSwEnable (bit [31]) DBGSWENABLE signal

0 LOW.

1 HIGH.
This is the reset value.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-141
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.3 Implementing a MEM-AP
7.3 Implementing a MEM-AP
This section gives information about the implementation of a MEM-AP and contains the following:
• IMPLEMENTATION DEFINED features of an MEM-AP implementation.
• MEM-AP implementation requirements.
• MEM-AP Extensions on page 7-143.

7.3.1 IMPLEMENTATION DEFINED features of an MEM-AP implementation

There are a number of IMPLEMENTATION DEFINED features of an MEM-AP implementation:

• Whether the MEM-AP supports data bus access sizes other than word, including whether the implementation
includes the extension summarized in MEM-AP Large Data Extension on page 7-143.

• Whether the MEM-AP supports packed transfers.

• Whether the MEM-AP supports addresses larger than 32-bit, meaning whether the implementation includes
the extension summarized in MEM-AP Large Physical Address Extension on page 7-143.

• Whether the MEM-AP supports barrier operations, meaning whether the implementation includes the
extension summarized in MEM-AP Barrier Operation Extension on page 7-143.

Also, it is IMPLEMENTATION DEFINED whether the features described in Slave memory port and software access
control on page 7-140 are supported.

These implementation choices affect the following register fields:
• CSW.{DbgSwEnable, Mode, AddrInc, Size}.
• CFG.{LD, LA, BE}.

In addition, the CSW register can include the following optional fields that are not described elsewhere in this
chapter:

CSW.{Prot, Type}, bits[30:24, 15:12]

These fields can be implemented to provide a bus access control mechanism. If implemented, it
enables a debugger to specify flags for a memory access. The permitted values and their significance
are IMPLEMENTATION DEFINED, because they relate to the underlying bus architecture. ARM
strongly recommends that these bits reset to useful values, that might not be zero. For example:

• If the bus supports privileged and non-privileged accesses, the reset value of this field must
select privileged accesses.

• If the bus supports code and data accesses, the reset value must select data accesses.

• If the bus supports both Secure and Non-secure address spaces, CSW.{Prot,Type} must reset
to select Non-secure addresses.

CSW.SPIDEN, bit[23]

This field can be implemented to indicate whether the MEM-AP can generate secure accesses.

7.3.2 MEM-AP implementation requirements

The descriptions given in the section MEM-AP functions on page 7-132 indicate a number of areas where the
MEM-AP functionality is IMPLEMENTATION DEFINED. However, the IMPLEMENTATION DEFINED features are
inter-dependent. These dependencies are summarized here.

In a MEM-AP:

• The options for the size of data bus accesses are:

— Support word (32-bit) accesses only.

— Support word (32-bit), halfword (16-bit), and byte (8-bit) accesses, and optionally support larger
access sizes.
7-142 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.3 Implementing a MEM-AP
No other combinations of supported access sizes are permitted. For more information see Variable access size
for memory accesses on page 7-136.

• If access sizes smaller than word are not supported then packed transfers are not supported. Otherwise, it is
IMPLEMENTATION DEFINED whether packed transfers are supported. For more information see Packed
transfers on page 7-138.

• It is IMPLEMENTATION DEFINED whether access sizes larger than 32-bit are supported. If larger access sizes
are not supported, CFG.LD is RAZ. For more information, see MEM-AP Large Data Extension.

• It is IMPLEMENTATION DEFINED whether addresses larger than 32-bit are supported. If larger addresses are not
supported, CFG.LA is RAZ. For more information, see MEM-AP Large Physical Address Extension.

• It is IMPLEMENTATION DEFINED whether barrier operations are supported. If barrier operations are not
supported, CSW.Mode is RAZ. For more information, see MEM-AP Barrier Operation Extension.

7.3.3 MEM-AP Extensions

The following subsections summarize the effects of the optional MEM-AP Extensions.

MEM-AP Large Physical Address Extension

The MEM-AP Large Physical Address Extension provides address spaces of up to 64-bits.

Implementing this extension changes the format of the following MEM-AP registers:
• BASE, Debug Base Address register on page 7-147.
• BD0-BD3, Banked Data registers 0-3 on page 7-150.
• CFG, Configuration register on page 7-153.
• CSW, Control/Status Word register on page 7-154.
• DRW, Data Read/Write register on page 7-156.
• TAR, Transfer Address Register on page 7-158.

MEM-AP Large Data Extension

The MEM-AP Large Data Extension can support 32-bit, 64-bit, 128-bit, or 256-bit accesses, in addition to optional
8-bit and 16-bit accesses.

The following registers have different formats to support this extension:
• CSW, Control/Status Word register on page 7-154.
• DRW, Data Read/Write register on page 7-156.
• BD0-BD3, Banked Data registers 0-3 on page 7-150.
• CFG, Configuration register on page 7-153.

Although the extension can support 64-bit, 128-bit, and 256-bit accesses, it does not require an implementation to
support all of these access sizes. If the CSW.Size field is written with a value corresponding to a size that is not
supported, or with a reserved value:
• A read of the field returns a value corresponding to a supported size.
• MEM-AP behavior corresponds to the value returned by the read of the CSW.Size field.

MEM-AP Barrier Operation Extension

The MEM-AP Barrier Operation Extension provides support for barrier operations. If the bus supports a weak
memory ordering model, then barrier operations must create order.

The following registers are new or have different formats to support this extension:
• CSW, Control/Status Word register on page 7-154.

• MBT, Memory Barrier Transfer register on page 7-158.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-143
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.4 MEM-AP examples of pushed-verify and pushed-compare
7.4 MEM-AP examples of pushed-verify and pushed-compare
A Debug Port (DP) might support pushed operations, as described in Pushed-compare and pushed-verify operations
on page 2-36. However, these operations involve interaction between the DP and an AP, because each pushed
operation requires an AP read. In the case of a MEM-AP, this requires a read from the connected debug memory
system. This section gives some examples of pushed operations on a DP that is connected to a MEM-AP.

7.4.1 Example use of pushed-verify operation on a MEM-AP

You can use pushed-verify to verify the contents of system memory:

• Make sure that the MEM-AP Control/Status Word (CSW) register is set up to increment the Transfer Address
Register (TAR) after each access.

• Write to the Transfer Address Register (TAR) to indicate the start address of the memory region that is to be
verified.

• Write a series of expected values as AP transactions. On each write transaction, the DP issues an AP read
access, compares the result against the value supplied in the AP write transaction, and sets the
CTRL/STAT.STICKYCMP bit if the values do not match.

The TAR is incremented on each transaction.

In this way, the series of values supplied is compared against the contents of the memory region, and STICKYCMP
set to 1 if they do not match.

7.4.2 Example use of pushed-find operation on a MEM-AP

You can use pushed-find to search system memory for a particular word.

• Make sure that the MEM-AP Control/Status Word (CSW) register is set up to increment the TAR after each
access.

• Write to the Transfer Address Register (TAR) to indicate the start address of the debug register region that is
to be searched.

• Repeatedly write the value to be searched for as an AP write transaction to the Data Read/Write register
(DRW). On each transaction the MEM-AP reads the location indicated by the TAR.

— The value returned is compared with the value supplied in the AP write transaction. If they match, the
STICKYCMP flag is set to 1.

— Otherwise, the TAR is incremented.

If you use pushed-find with byte lane masking you can search for one or more bytes.

Example using the transaction counter for a pushed-find operation on a MEM-AP on page 7-145 describes how the
transaction counter can refine this search operation.

You can use pushed-find without address incrementing to poll a single location, for example to test for a flag being
set to 1 on completion of an operation.
7-144 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.4 MEM-AP examples of pushed-verify and pushed-compare
7.4.3 Example using the transaction counter for a pushed-find operation on a MEM-AP

The transaction counter can refine the pushed-find search operation described in Example use of pushed-find
operation on a MEM-AP on page 7-144. Pushed-find enables you to search system memory for a particular word,
and if used with byte lane masking you can search for one or more bytes. The transaction counter enables you use
a single AP write transaction to search an area of memory.

To perform a search under the control of the transaction counter:

• Make sure that the MEM-AP Control/Status Word (CSW) register is set up to increment the TAR after each
access.

• Write to the Transfer Address Register (TAR) to indicate the start address of the debug register region that is
to be searched.

• Write to the transaction counter field, CTRL/STAT.TRNCNT to indicate the required number of repeat
accesses. This value defines the size of the region to be searched.

• Write the value you are searching for as an AP write to the Data Read/Write register (DRW). The MEM-AP
repeatedly reads the location indicated by the TAR. The value returned by each read is compared with the
value supplied in the AP write transaction. If they match, the STICKYCMP flag is set to 1 and the operation
completes. Otherwise:

— The TAR is incremented.

— If the transaction counter is nonzero, it is decremented.

The operation completes when either the STICKYCMP flag is set to 1 or after the final read when the
transaction counter was zero.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-145
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.5 MEM-AP register summary
7.5 MEM-AP register summary
Table 7-6 summarizes the MEM-AP registers, and indicates where they are described in detail. This table shows the
memory map of the MEM-AP registers, and includes the Identification Register that is described in Chapter 6 The
Access Port (AP).

All of the registers listed in Table 7-6 are required in every MEM-AP implementation.

Reserved addresses in the register memory map are RES0.

Using the Debug Port to access Access Ports on page 1-24 explains how to access AP registers.

Table 7-6 Summary of Memory Access Port (MEM-AP) registers

Addressa Access Reset value Description

0x00 RW See CSW, Control/Status
Word register on
page 7-154.

See CSW, Control/Status Word register on page 7-154.

0x04 RW UNKNOWN See TAR, Transfer Address Register on page 7-158.

0x08 RW 0x00000000 See TAR, Transfer Address Register on page 7-158.
The entries in this row only apply if the implementation
includes the Large Physical Address Extension.b

Otherwise, this register is reserved, RES0.

0x0C RW Not applicable.c See DRW, Data Read/Write register on page 7-156.

0x10 RW Not applicable.c See BD0-BD3, Banked Data registers 0-3 on page 7-150.

0x14 RW

0x18 RW

0x1C RW

0x20 IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED See MBT, Memory Barrier Transfer register on
page 7-158.
The entries in this row only apply if the implementation
includes the Barrier Operation Extension.
Otherwise, this register is reserved, RES0.

0x24 - 0xEC RES0 - Reserved

0xF0 RO IMPLEMENTATION DEFINED See BASE, Debug Base Address register on page 7-147.
The entries in this row only apply if the implementation
includes the Large Physical Address Extension.b

Otherwise, this register is reserved, RES0.

0xF4 RO IMPLEMENTATION DEFINED See CFG, Configuration register on page 7-153.

0xF8 RO IMPLEMENTATION DEFINEDd See BASE, Debug Base Address register on page 7-147.

0xFC RO IMPLEMENTATION DEFINEDd See IDR, Identification Register on page 6-124.

a. Bits [1:0] of the register address are always 0b00.
b. When the MEM-AP implementation includes the Large Physical Address Extension, the location holds the most-significant word of the

64-bit register.
c. These registers cannot be read until the memory access has completed. Therefore they do not have reset values.
d. The register descriptions give details of the reset values of some bits of these registers.
7-146 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
7.6 MEM-AP register descriptions
This section describes each of the required MEM-AP registers. Table 7-6 on page 7-146 shows these registers, and
indexes the full register descriptions in this section. The following subsections describe the registers:
• BASE, Debug Base Address register.
• BD0-BD3, Banked Data registers 0-3 on page 7-150.
• CFG, Configuration register on page 7-153.
• CSW, Control/Status Word register on page 7-154.
• DRW, Data Read/Write register on page 7-156.
• MBT, Memory Barrier Transfer register on page 7-158.
• TAR, Transfer Address Register on page 7-158.

7.6.1 BASE, Debug Base Address register

The BASE register attributes are:

Purpose The BASE register provides an index into the connected memory-mapped resource. This index
value points to one of the following:
• The start of a set of debug registers.
• A ROM table that describes the connected debug components.

Configurations

A MEM-AP register. The BASE register is:

• A 64-bit register in a MEM-AP implementation that includes the extension described in
MEM-AP Large Physical Address Extension on page 7-143.

• Otherwise, a 32-bit register.

If the bus supports both Secure and Non-secure address spaces, the BASE register is defined to be
a Non-secure address. Whether the ROM tables are also accessible in the Secure address space is
IMPLEMENTATION DEFINED.

CSW.{Prot,Type} must reset to an access type that is suitable for accessing ROM tables.

Attributes The BASE register is:

• A read-only register.

• In a MEM-AP implementation that does not include the Large Physical Address Extension,
a 32-bit register at offset 0xF8 in the MEM-AP register space. This means it is the third
register in the last register bank of the MEM-AP register space, bank 0xF.

• In a MEM-AP implementation that includes the Large Physical Address Extension, a 64-bit
register in the MEM-AP register space, with:
— The least-significant word of the register at offset 0xF8.
— The most-significant word of the register at offset 0xF0.

Caution
 In the 64-bit register implementation, the two words of the register are not contiguous in

memory.

Note
 Early implementations of Debug Access Ports had different implementations of the Debug Base Address register,
described in Legacy format of the Debug Base Address Register on page 7-150. The legacy format is a 32-bit register
at offset 0xF8.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-147
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
The BASE register bit assignments are:

BASEADDR[63:32], bits[31:0] of word at offset 0xF0, 64-bit register only

When the BASE register is implemented as a 64-bit register, bits[63:32] of the address offset, in the
memory-mapped resource, of the start of the debug register space or a ROM table address.

For more information, see The BASEADDR field on page 7-149.

When the BASE register is implemented as a 32-bit register, this memory location is reserved, RES0.

BASEADDR[31:12], bits[31:12] of word at offset 0xF8

Bits [31:12] of the address offset, in the memory-mapped resource, of the start of the debug register
space or a ROM table address. See The BASEADDR field on page 7-149. Bits [11:0] of the address
offset are 0x000.

Bits[11:2] of word at offset 0xF8

Reserved, RES0.

Format, bit[1] of word at offset 0xF8

Base address register format.

This bit is RAO, indicating the ARM Debug Interface v5 format.

Note
 This bit is RAZ in one of the legacy Debug Base Address register formats, see Legacy format of the

Debug Base Address Register on page 7-150.

Entry present, bit[0] of word at offset 0xF8

This field indicates whether a debug entry is present for this MEM-AP:

0 No debug entry present.

1 Debug entry present.

Note
 Legacy format of the Debug Base Address Register on page 7-150 includes a description of the

legacy format of the BASE register when there is no debug entry present.

When BASE is implemented as a 64-bit register, it can specify any address in a 64-bit physical address (PA) space.
However:
• ROM tables support only 32-bit signed offset values.
• ARMv7-A processors with the MMU disabled, and ARMv7-R, ARMv6-M and ARMv7-M processors can

access only a 32-bit PA space.

Therefore, ARM recommends that all debug components:
• Are located in the bottom 4GB of the PA space.
• Are located in one 2GB half of that address space.

BASEADDR[31:12]

31 12 11 2 0

Reserved, RES0 1 P

1

Format

Offset

0xF0 BASEADDR[63:32]

31 0

0xF8

†

† 64-bit register implementation only. When BASE is a 32-bit register, location is reserved, RES0.
7-148 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
The BASEADDR field

The BASEADDR field defines the BaseAddress, in the debug component memory map, of the description of the
debug component or components to which the ADIv5 DAP is connected, and:

• Bits[11:0] of the address are zero, and are not held in the BASE register.

• Bits[31:12] of the BASE register word at offset 0xF8 hold bits[31:12] of the address.

• When BASE is implemented as a 64-bit register, bits[31:0] of the BASE register word at offset 0xF0 hold
bits[63:32] of this address.

The details of the memory area pointed to by this base address depend on the number of debug components
connected to the ARM Debug Interface:

• If the ARM Debug Interface is connected to a single debug component, as in the system shown in Figure 1-3
on page 1-28, BaseAddress is the base address of that component, and points to the start of the debug registers
for that component.

A debug component can occupy more than one 4KB page of memory. If it does, BaseAddress points to the
final 4KB page for the component.

• If the ARM Debug Interface is connected to more than one debug component, as in the system shown in
Figure 1-6 on page 1-30, then BaseAddress must point to a ROM table. This ROM table gives the addresses
of the other debug components connected to the interface. ROM tables are described in Chapter 10 ROM
Tables.

A simple system, that contains only a single debug component, might be implemented with a separate ROM
table, as shown in Figure 1-5 on page 1-29. In this case BaseAddress points to the ROM table.

Debugger issues

A debugger can always examine the four words starting at offset 0xFF0 from the base address, to discover
information about the debug components connected to the MEM-AP. That is, it can check the four words starting at
(BaseAddress + 0xFF0) for this information. This address points to the four Component ID registers, either for the
single debug component or for the ROM table, with Component ID Register 0 at offset 0xFF0. Reading the DRW
register with (BaseAddress + 0xFF0) in the TAR returns the value of this register. For more information about these
registers see The Component ID Registers on page 9-187.The debugger can interpret the returned information to
find the type of component connected. The component type is one of:
• ROM table.
• Debug component.
• Other.

The ARM Debug Interface v5 architecture specification does not specify requirements about the type of component
pointed to by the BASE register.

A debugger must handle the following situations as non-fatal errors:

• BaseAddress is a faulting location.

• The four words starting at (BaseAddress + 0xFF0) are not valid Component ID registers.

• An entry in the ROM table points to a faulting location.

• An entry in the ROM table points to a memory block that does not have a set of four valid Component ID
registers starting at offset 0xFF0.

Typically, a debugger issues a warning if it encounters one of these situations. However ARM recommends it
continues operating. An example of an implementation that might cause errors of this type is a system with static
BaseAddress or ROM table entries that enable entire subsystems to be disabled, for example by a tie-off input,
packaging choice, fuse or similar.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-149
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
Debug component address map segmentation

When using 32-bit addressing, meaning BASE is implemented as a 32-bit register, if a MEM-AP implements a
dedicated connection between the DAP and a set of debug registers, the address map of the connection must be
aliased into two logical 2GB segments. This enables the device to distinguish two types of access:
• Debugger-initiated accesses address the logical segment with TAR[31]=1.
• System-initiated accesses, if permitted, address the logical segment with TAR[31]=0.

With such an implementation, BASEADDR[31] must be set to 1.

Even where system-initiated accesses are not permitted, ARM recommends that the debug component address space
is segmented in this way, and that debugger-initiated accesses have TAR[31]=1.

Other systems might include IMPLEMENTATION DEFINED methods for signaling debugger accesses to system
components.

The section Legacy format of the Debug Base Address Register is also important for debugger implementation.

Legacy format of the Debug Base Address Register

The legacy format for the Debug Base Address Register is described in the following subsections:
• Legacy format when no debug entries are present.
• Legacy format for specifying BASEADDR.

The legacy format is defined only for 32-bit addresses and so is not permitted for a MEM-AP that implements the
Large Physical Address Extension.

Note
 This format must not be used for new ARM Debug Interface designs.

Legacy format when no debug entries are present

The legacy format of the BASE register when there are no debug entries present is:

NOTPRESENT, bits[31:0]

This field has the value 0xFFFFFFFF, indicating that there are no debug entries.

Legacy format for specifying BASEADDR

When bit[1] of the BASE register is 0, the legacy format of the register holds the base address value. This format is:

BASEADDR, bits[31:12]

Bits[31:12] of the base address. Bits[11:0] of the base address are zero.

For more information, see The BASEADDR field on page 7-149.

Bits[11:2] Reserved, RAZ.

FORMAT, bit[1]

RAZ, indicating that this is the legacy 32-bit BASE register format.

Bit[0] Reserved, RAZ.

7.6.2 BD0-BD3, Banked Data registers 0-3

The BD0-BD3 register attributes are:

Purpose The Banked Data registers map APACC transactions directly to memory accesses, without having
to change the value in the TAR. Together, the four Banked Data Registers give access to four words
of the memory space, starting at the address specified in the TAR.
7-150 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
Each Banked Data register holds a 32-bit data value:
• In write mode, a Banked Data register holds a value to write to memory.
• In read mode, a Banked Data register holds a value read from memory.

Configurations

MEM-AP registers. The MEM-AP Large Data Extension, described in MEM-AP Large Data
Extension on page 7-143, extends the behavior of these registers for assesses with CSW.Size set to
doubleword.

Attributes The Banked Data registers are:

• At offsets 0x10, 0x14, 0x18, and 0x1C in the MEM-AP register space.

• Read/write registers.

The bit assignments of a BDn register are:

Banked data, bits[31:0]

Data value of the current transfer.

See Use of the BD registers with the MEM-AP Large Data Extension on page 7-152 for more
information about BD register accesses in an MEM-AP that includes the Large Data Extension.

Auto address incrementing is not performed when a Banked Data register is accessed. The value of CSW.AddrInc
has no effect on Banked Data register accesses.

Behavior is UNPREDICTABLE if a Banked Data register is accessed with the CSW.Size field set to any transfer size
other value other than word, or doubleword if the MEM-AP Large Data Extension is implemented.

Table 7-7 shows how the four Banked Data registers map onto the address space when CSW.Size specifies word
accesses. Bits [1:0] of the memory address are always 0b00.

An access to a Banked Data register initiates an access to the memory address shown in Table 7-7. The AP access
does not complete until the memory access has completed.

Table 7-7 Mapping of Banked Data registers onto memory addresses for word accesses

Register Offset

Memory address accessed
if Large Physical Address
Extension is not
implemented

Memory address accessed
if Large Physical Address
Extension is implemented

BD0 0x10 TAR[31:4] << 4 TAR[63:4] << 4

BD1 0x14 (TAR[31:4] << 4) + 0x4 (TAR[63:4] << 4) + 0x4

BD2 0x18 (TAR[31:4] << 4) + 0x8 (TAR[63:4] << 4) + 0x8

BD3 0x1C (TAR[31:4] << 4) + 0xC (TAR[63:4] << 4) + 0xC
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-151
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
Use of the BD registers with the MEM-AP Large Data Extension

For an MEM-AP implementation that includes the Large Data Extension, Table 7-8 shows how the four Banked
Data registers map onto the address space when CSW.Size specifies doubleword accesses. Bits [2:0] of the memory
address are always 0b000.

A debugger must:
• Access both registers of the pair.
• Access the lower-numbered register first.

The lower-numbered register holds the least-significant word. The higher-numbered register holds the
most-significant word.

For a read, the first AP access initiates the memory access to the memory address shown in Table 7-8. The AP access
does not complete until the memory access completes.

For a write, the second AP access initiates the memory access to the memory address shown in Table 7-8. The AP
access does not complete until the memory access completes.

For example, if the Large Physical Address Extension is implemented, to read the doubleword value at (TAR[63:4]
<< 4), a debugger must:
1. Read BD0, to obtain bits [31:0] of the doubleword.
2. Read BD1, to obtain bits [63:32] of the doubleword.

When CSW.Size specifies doubleword accesses, for a sequence of two accesses to the BD registers:

• The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

• An access to CSW in the middle of the sequence terminates that sequence. The next access to a BD register
is the first access of a new sequence.

If a write sequence is terminated, no memory write is initiated.

• The effect of not accessing the correct register first is UNPREDICTABLE.

• After accessing the first BD register, the effect of accessing any MEM-AP register other than the CSW or the
correct second BD register is UNPREDICTABLE. This means the UNPREDICTABLE sequences include:
— Accessing BD1 and then accessing BD2.
— Two accesses to the same BD register.

Table 7-8 Mapping of Banked Data registers onto memory addresses for doubleword accesses

Register Offset

Memory address accessed
if Large Physical Address
Extension is not
implemented

Memory address accessed
if Large Physical Address
Extension is implemented

Access
Order

BD0 0x10 TAR[31:4] << 4 TAR[63:4] << 4 First

BD1 0x14 TAR[31:4] << 4 TAR[63:4] << 4 Second

BD2 0x18 (TAR[31:4] << 4) + 0x8 (TAR[63:4] << 4) + 0x8 First

BD3 0x1C (TAR[31:4] << 4) + 0x8 (TAR[63:4] << 4) + 0x8 Second
7-152 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
7.6.3 CFG, Configuration register

The CFG register attributes are:

Purpose The CFG register provides information about how the MEM-AP implementation is configured.
That is, it gives information about the implemented MEM-AP features.

Configurations

A MEM-AP register.

Attributes The CFG register is:

• At offset 0xF4 in the MEM-AP register space.

• A read-only register.

The CFG register bit assignments are:

Bits[31:3] Reserved, RES0.

LD, bit[2] Large data. This bit indicates whether the MEM-AP implementation includes the Large Data
Extension, that provides support for data items larger than 32-bits:
0 The implementation does not support data items larger than 32-bits.
1 The implementation includes the Large Data Extension, and therefore supports data

items larger than 32-bits.
For more information, see MEM-AP Large Data Extension on page 7-143.

Note
 Regardless of the value of this bit, the MEM-AP must support word data items, and might support

smaller data items. See the description of the CSW.Size field for more information about possible
support for smaller data items.

LA, bit[1] Long address. This bit indicates whether the MEM-AP implementation includes the Large Physical
Address Extension, that supports physical addresses of more than 32-bits:
0 The implementation support only physical addresses of 32-bits, or fewer bits.

Offsets 0x08 and 0xF0 in the MEM-AP register map are reserved.
1 The implementation supports physical addresses of more than 32-bits. This means:

• The TAR is a 64-bit register, at offsets 0x04 and 0x08 in the MEM-AP register
map.

• The BASE register is a 64-bit register, at offsets 0xF8 and 0xF0 in the MEM-AP
register map.

For more information, see MEM-AP Large Physical Address Extension on page 7-143.

BE, bit[0] Big-endian. ADIv5.2 obsoletes support for big-endian MEM-AP, and this bit must RAZ. For more
information, see Big-endian support on page 7-137.

LALD

31 0

Reserved, RES0 BE

123
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-153
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
7.6.4 CSW, Control/Status Word register

The CSW register attributes are:

Purpose

The CSW register configures and controls accesses through the MEM-AP to or from a connected
memory system.

Configurations

A MEM-AP register.

Attributes

The CSW register is:

• At offset 0x00 in the MEM-AP register space.

• A read/write register, although some bits of the register are read-only.

The CSW register bit assignments
are:

DbgSwEnable, bit[31]

Debug software access enable.

DbgSwEnable must be ignored and treated as one if DeviceEn is set to 0.

The use of this flag is IMPLEMENTATION DEFINED, see Slave memory port and software access
control on page 7-140.

This bit is optional. If not implemented, the bit is RES0.

{Prot, Type}, bits[30:24, 15:12]

Bus access protection control. A debugger can use these fields to specify flags for a debug access.
The permitted values and their significance are IMPLEMENTATION DEFINED, because they relate to
the underlying bus architecture. For more information, see Implementing a MEM-AP on page 7-142.

These fields are optional. If not implemented, the fields are RES0.

SPIDEN, bit[23]

Secure Privileged Debug Enabled. If this bit is implemented, the possible values are:
0 Secure accesses disabled.
1 Secure accesses enabled.

This bit is optional, and read-only. If not implemented, the bit is RES0.

Bits[22:16] Reserved, RES0.

Type, bits[15:12]

See the entry for {Prot, Type}.

If not implemented, the field is RES0.

Type ‡

31 30 24 23 22 12 11 8 7 6 5 4 3 2 0

Prot ‡ Reserved
RES0 Mode Size

Reserved, RES0
AddrInc
DeviceEn
TrInProg

SPIDEN ‡DbgSwEnable ‡

‡ These fields are not required. Whether they
are present is IMPLEMENTATION DEFINED.

1516
7-154 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
Mode, bits[11:8]

Mode of operation. The possible values of this bit are:

0000 Basic mode.

0001 Barrier support enabled. For more information, see MEM-AP Barrier Operation
Extension on page 7-143.

All other values are reserved.

The set of modes supported is IMPLEMENTATION DEFINED. If the implementation supports only one
mode, this field can be RO.

If this field is RW, the reset value of this field is UNKNOWN.

TrInProg, bit[7]

Transfer in progress. This bit is set to 1 while a transfer is in progress on the connection to the
memory system, and is set to 0 while the connection is idle.

After an ABORT operation, debug software can read this bit to check whether the aborted
transaction completed.

This bit is read-only.

DeviceEn, bit[6]

Device enabled. This bit is set to 1 when transactions can be issued through the MEM-AP.

This bit shows the value of the DEVICEEN signal, that is a control input to the DAP. If
DEVICEEN is not implemented this bit is RAO.

For more information, see Enabling access to the connected debug device or memory system on
page 7-132.

This bit is read-only.

AddrInc, bits[5:4]

Address auto-increment and packing mode. This field controls whether the access address
increments automatically on read and write data accesses through the DRW register. For more
information see Auto-incrementing the Transfer Address Register (TAR) on page 7-132.

The reset value of this field is UNKNOWN.

Bit[3] Reserved, RES0.

Size, bits[2:0] Size of access. This field indicates the size of access to perform. It is IMPLEMENTATION DEFINED
whether a MEM-AP supports access sizes other than 32-bits:

• If it does then the Size field is RW, and the field indicates the size of the access to perform.
See Variable access size for memory accesses on page 7-136.
When this field is RW, its reset value is UNKNOWN.

• If it does not then this field is RO and it reads as 0b010 to indicate that only 32-bit accesses
are supported.

If a MEM-AP implementation includes the Large Data Extension then:

• This field must be implemented as RW.

• If a reserved value, or a value corresponding to an unsupported access size, is written to this
field, then:
— A read of the field returns the value corresponding to a supported size.
— MEM-AP behavior corresponds to the value returned by a read of this field.

For more information about the extension, see MEM-AP Large Data Extension on page 7-143.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-155
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
7.6.5 DRW, Data Read/Write register

The DRW register attributes are:

Purpose The DRW register maps an AP access directly to one or more memory accesses. The AP access does
not complete until the memory access, or accesses, complete.

Configurations

A MEM-AP register. The MEM-AP Large Data Extension, described in MEM-AP Large Data
Extension on page 7-143, modifies the behavior of this registers for accesses with CSW.Size set to
a value larger than 0b010.

Attributes The DRW register is:

• At offset 0x0C in the MEM-AP register space.

• A read/write register.

The DRW register is a 32-bit register:

• In write mode, the DRW holds the value to write for the current transfer to the address
specified in the TAR.

• In read mode, the DRW holds the value read in the current transfer from the address specified
in the TAR.

The DRW register bit assignments are:

Data, bits[31:0]

Data value of the current transfer.

The size of memory access is controlled by the CSW.Size field. See Variable access size for memory accesses on
page 7-136.

See Use of the DRW register with the MEM-AP Large Data Extension for more information about DRW register
accesses in an MEM-AP that includes the Large Data Extension.

If CSW.Size specifies an access size of less than 32-bits then a single access to the DRW might result in multiple
memory accesses, depending on the values of CSW.AddrInc. See Packed transfers on page 7-138.

After each access the TAR might be incremented depending on the value of CSW.AddrInc. See Auto-incrementing
the Transfer Address Register (TAR) on page 7-132.

Use of the DRW register with the MEM-AP Large Data Extension

In an MEM-AP implementation that includes the Large Data Extension, the behavior of accesses to the DRW
register depends on the memory access size defined by the CSW.Size field, as follows:

8-bit, 16-bit, or 32-bit accesses

Behavior is identical to the behavior described in this section for a MEM-AP implementation that
does not include the Large Data Extension.
7-156 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
64-bit, 128-bit, and 256-bit accesses

Software must make multiple accesses to the DRW to perform a single memory access, as Table 7-9
shows. The Total number column shows the number of DRW accesses in the required DRW access
sequence:

The behavior depends on whether the access is a read or a write, as follows:

Read The first read of the DRW in a sequence initiates the memory access, and returns the
least significant 32-bit word of the required data value. The AP access does not
complete until the memory access completes.
Each subsequent DRW read in the sequence, up to the total shown in Table 7-9, returns
the next 32-bit word of the required data, but does not initiate another memory access.

Write The first writes of the DRW in a sequence, except the last, specify 32-bit words of the
data value to be written, starting with the least-significant word. These writes do not
initiate a memory access.
The last write of the DRW specifies the most-significant 32-bit word of the data value,
and initiates the memory access. The AP access does not complete until the memory
access completes.

As this description indicates, each DRW access sequence:
• Consists of the number of DRW accesses specified in Table 7-9.
• Corresponds to a single memory access.

Within such a DRW access sequence:

• The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

• An access to CSW in the middle of the sequence terminates that sequence. The next access
to the DRW register is the first access of a new sequence.
If a write sequence is terminated, no memory write is initiated.

• After the first DRW access of the sequence, the effect of accessing any MEM-AP register
other than the CSW or the DRW is UNPREDICTABLE.

Table 7-9 Number of DRW accesses required for different CSW.Size values

CSW.Size Memory access size Total number of DRW accesses required

0b011 64-bit 2

0b100 128-bit 4

0b101 256-bit 8
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-157
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
7.6.6 MBT, Memory Barrier Transfer register

The MBT register attributes are:

Purpose The MBT register generates a barrier operation on the bus. If the Barrier Operation Extension is not
implemented, this register is reserved, RES0.

Configurations

A MEM-AP register, implemented only if the MEM-AP implementation includes the extension
described in MEM-AP Barrier Operation Extension on page 7-143.

Usage constraints

If CSW.Mode is set to a value other than 0b0001, writes to this register are ignored.

Attributes The MBT register is at offset 0x20 in the MEM-AP register space.

Other properties of the register are IMPLEMENTATION DEFINED.

The definition of this register is IMPLEMENTATION DEFINED.

7.6.7 TAR, Transfer Address Register

The TAR attributes are:

Purpose The TAR holds the memory address to be accessed.

Configurations

A MEM-AP register. The TAR is:

• A 64-bit register in a MEM-AP implementation that includes the extension described in
MEM-AP Large Physical Address Extension on page 7-143.

• Otherwise, a 32-bit register.

Attributes The TAR is:

• A RW register.

• In a MEM-AP implementation that does not include the Large Physical Address Extension,
a 32-bit register at offset 0x04 in the MEM-AP register space.
The reset value of this register is UNKNOWN.

• In a MEM-AP implementation that includes the Large Physical Address Extension, a 64-bit
register in the MEM-AP register space, with:

— The least-significant word of the register at offset 0x04.
The reset value of this word is UNKNOWN.

— The most-significant word of the register at offset 0x08.
The reset value of this word is 0x00000000.

The TAR bit assignments are:

Address[31:0], bits[31:0] of the register word at offset 0x08

Bits[31:0] of the memory address for the current transfer.

Address[63:32]

31 0

Offset

0x08 Address[31:0]

31 0

0x0C
†

† 64-bit register implementation only. When the TAR is a 32-bit register, location is reserved, RES0.
7-158 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
Address[63:32], bits[31:0] of the register word at offset 0x0C, Large Physical Address Extension

Bits[63:32] of the memory address for the current transfer.

If the MEM-AP implementation does not include the Large Physical Address Extension, this
register word is RES0.

The address held in the TAR represents an address in the memory system to which the MEM-AP is connected. It is
not an address within the MEM-AP.

Depending on whether the MEM-AP implementation includes the Large Physical Address Extension, TAR is either:
• A 64-bit register, TAR[63:0].
• A 32-bit register, TAR[31:0].

When using the DRW, the TAR specifies the memory address to access:

• If the MEM-AP does not support accesses smaller than word then TAR[1:0] can be implemented as RAZ/WI.

• The contents of the TAR can be incremented automatically on a successful DRW access, see
Auto-incrementing the Transfer Address Register (TAR) on page 7-132.

When accessing memory through BD0-BD3, Banked Data registers 0-3 on page 7-150, bits [3:0] of the TAR are
ignored, and TAR[63:4] or TAR[31:4] specifies the base address of the 16-byte block of memory that can be
accessed.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-159
ID080813 Non-Confidential

7 The Memory Access Port (MEM-AP)
7.6 MEM-AP register descriptions
7-160 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 8
The JTAG Access Port (JTAG-AP)

This chapter describes the implementation of the JTAG Access Port (JTAG-AP), and how a JTAG-AP provides a
Debug Port connection to one or more JTAG components. The JTAG-AP is an optional component of a Debug
Access Port.

This chapter contains the following sections:
• Overview of the JTAG Access Port (JTAG-AP) on page 8-162.
• Operation of the JTAG-AP on page 8-166.
• The JTAG Engine Byte Command Protocol on page 8-169.
• JTAG-AP register summary on page 8-176.
• JTAG-AP register descriptions on page 8-177.

Note
 Chapter 6 The Access Port (AP) gives additional information about APs.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-161
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.1 Overview of the JTAG Access Port (JTAG-AP)
8.1 Overview of the JTAG Access Port (JTAG-AP)
The JTAG Access Port is an optional component of a Debug Access Port (DAP). It enables up to eight legacy
IEEE 1149.1 JTAG scan chains to be connected to the DAP. Each scan chain can contain any number of TAPs,
however ARM recommends that only one TAP is connected to each scan chain.

An external debugger accesses a JTAG component, connected to a JTAG-AP, through a JTAG scan chain. The
debugger accesses this scan chain using APACC accesses to registers in the JTAG-AP. A debugger also has to access
JTAG-AP registers to control the JTAG-AP, or to obtain status or identification information from the JTAG-AP.

8.1.1 Selecting and accessing the JTAG-AP

Figure 8-1 shows the implementation of a JTAG-AP, and how the JTAG-AP connects the DP to up to eight JTAG
devices. APACC accesses to the DP are passed to the JTAG-AP.

The method of selecting an AP, and selecting a specific register within the selected AP, is the same for MEM-APs
and JTAG-APs. This is summarized in Selecting and accessing an AP on page 6-123.

Figure 8-1 JTAG-AP connecting the DP to JTAG devices

DPACC

Note: Register field widths are not to scale.
 For example, RnW is a single bit.

APACC
RnWA[3:2]Data[31:0]

A[7:4] RnWA[3:2]Data[31:0]

Generic
Debug Port

(DP)

APSEL
decode

JTAG Engine
and FIFOs

JT
AG

de
vi

ce
 1

D
eb

ug
 P

or
t

AP
 a

cc
es

s
JT

AG
 A

cc
es

s
Po

rt
U

p
to

 8

JT
AG

de

vi
ce

s

RnWA[3:2]Data[31:0]

Ba
nk

ed
 J

TA
G

-A
P

re
gi

st
er

s

R
es

er
ve

d

Ba
nk

 0
x
F

0
x
F
0

0
x
F
4

0
x
F
8

0
x
F
C

R
es

er
ve

d

R
es

er
ve

d

Id
en

tif
ic

at
io

n
R

eg
is

te
r (

ID
R

)

By
te

 F
IF

O
s

1
(B

xF
IF

O
1)

 †

Ba
nk

 0
x
1

0
x
1
0

0
x
1
4

0
x
1
8

0
x
1
C

By
te

 F
IF

O
s

2
(B

xF
IF

O
2)

 †

By
te

 F
IF

O
s

3
(B

xF
IF

O
3)

 †

By
te

 F
IF

O
s

4
(B

xF
IF

O
4)

 †

C
on

tro
l/S

ta
tu

s
W

or
d

(C
SW

)

Ba
nk

 0
x
0

0
x
0
0

Po
rt

Se
le

ct
 (P

SE
L)

0
x
0
4

Po
rt

St
at

us
 (P

ST
A)

0
x
0
8

R
es

er
ve

d
0
x
0
C

JTAG
Access Port
(JTAG-AP)

‡ This is only a partial
view of the DP
registers, refer to the
DP descriptions for
more information.

JTAG
Port Mux

JT
AG

de
vi

ce
 2

JT
AG

de
vi

ce
 7

JT
AG

de
vi

ce
 0

Sc
an

ch
ai

n
co

nn
ec

tio
ns

† On read operations, the
Byte Response FIFO
Registers, BRFIFO1 to
BRFIFO4, are accessed.
On write operations, the
Byte Command FIFO
Registers, BWFIFO1 to
BWFIFO4, are accessed.

AP Access

Access
Port
(AP)

Scan chain
access

JTAG
devices

D
P

R
eg

is
te

rs
 ‡

C
on

tro
l/S

ta
tu

s
(C

TR
L/

ST
AT

)

D
AT

A
LI

N
K

D
EF

IN
ED

AP
 S

el
ec

t (
SE

LE
C

T)

R
ea

d
Bu

ffe
r (

R
D

BU
FF

)

0
x
0
0

0
x
0
4

0
x
0
8

0
x
0
C

A[7:4] selects the register bank
A[3:2] selects register within bank

Data Link Interface

DP Access

AP
AC

C

Ac
ce

ss
 R

es
ul

t a
nd

 S
ta

tu
s

D
PA

C
C

Debug
Port
(DP)
8-162 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.1 Overview of the JTAG Access Port (JTAG-AP)
8.1.2 Logical structure of the JTAG-AP

A JTAG-AP comprises:

• The JTAG Engine. This is the main processing component of the JTAG-AP. It:
— Interprets a sequence of command bytes from the Command FIFO.
— Drives standard JTAG signals to the JTAG Port Multiplexer.
— Receives the TDO signal from the Port Multiplexer.
— Generates a response, that it passes to the Response FIFO.

• The JTAG Port Multiplexer. This multiplexes up to eight JTAG ports to the JTAG Engine. In addition to
forwarding the standard JTAG signals to and from each port, it provides additional control and status signals
for each port.

Note
 The Port Multiplexer also supports the RTCK (return clock) extension to the JTAG protocol, enabling the

JTAG scan chains to be self-timed. The JTAG signals from and to the JTAG-AP are asynchronous to the
Debug Port signals.

• Byte Command and Response FIFOs. These enable efficient use of the JTAG Engine.

• The JTAG-AP registers. These can be considered in three groups:
— An Identification Register.
— Control and status registers.
— FIFO access registers.

Figure 8-2 on page 8-164 shows this JTAG-AP structure.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-163
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.1 Overview of the JTAG Access Port (JTAG-AP)
Figure 8-2 Structure of the JTAG Access Port (JTAG-AP)

Note
 • The Response FIFO must be 7 bytes deep.

• The Command FIFO must be at least 4 bytes deep. Although the Command FIFO might be larger than this,
up to a maximum size of 7 bytes, there is unlikely to be any advantage in having a Command FIFO that is
larger than 4 bytes.

JTAG
Port Mux

JTAG
Engine

TC
K

TM
S

TD
I

TD
O

R
TC

K
P

or
t 0

P
or

t 1
P

or
t 2

P
or

t 3
P

or
t 4

P
or

t 5
P

or
t 6

P
or

t 7

JTAG ports
(might not all be implemented)

CSW

Command FIFO
(4 bytes)

Response FIFO
(7 bytes)

JTAG Access Port

AP register interface

Data flow path

Control
signals

n=1

n=2

n=3

31 24 23 16 15 8 7 0

BWFIFOnBRFIFOn
n=4

Status
signals

31 0

PSEL

APACC accesses

PSTA
31 0

Res

Res

31 24 23 16 15 8 7 0

n=1

n=2

n=3

n=4

JTAG signal bundles

Res Res

Res

Res Res

Res

Res

Res Res

Res

IDR
31 0
8-164 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.1 Overview of the JTAG Access Port (JTAG-AP)
8.1.3 JTAG port signals

The signal bundle between the JTAG Port Multiplexer and each implemented JTAG port includes:
• The standard IEEE 1149.1 JTAG signals.
• The non-IEEE 1149.1 extension RTCK signal.
• Additional port control and status signals.

Table 8-1 gives the full signal list. This list applies to each implemented port.

Table 8-1 JTAG Access Port JTAG port signals

Signal Directiona Description Notes

TCK Out Test Clock JTAG IEEE 1149.1 standard signals.

TMS Out Test Mode Select

TDI Out Test Data In

TDO In Test Data Out

TRST* Out Test Reset Active LOW JTAG IEEE 1149.1 standard signal.

RTCK In Return Clock JTAG extension signal, not specified by
IEEE 1149.1.
If the connected JTAG device has no Return Clock,
RTCK must be synthesized for the port.
Implementation of the RTCK signal is
IMPLEMENTATION DEFINED.

nSRSTOUT Out Subsystem Reset Active LOW.

SRSTCONNECTED In Subsystem Reset
Connected

Tie-off configuration signals to the JTAG Port
Multiplexer.

PORTCONNECTED In Port Connected

PORTENABLED In Port Enabled Can be deasserted by the JTAG subsystem, for
example when the connected TAP powers down.

a. Signal directions are given relative to the JTAG Port Multiplexer in the JTAG-AP.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-165
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.2 Operation of the JTAG-AP
8.2 Operation of the JTAG-AP
The JTAG-AP communicates with the device using the standard JTAG signals and scan chains. This operation is
controlled by the JTAG Engine. The Engine includes a serializer that takes TDI data out of the Command FIFO and
returns TDO data to the Response FIFO, see Figure 8-2 on page 8-164.

The external debugger:

1. Encodes JTAG commands and data into the JTAG Engine Byte Command Protocol, described in The JTAG
Engine Byte Command Protocol on page 8-169.

2. Writes to the BWFIFOn registers, to transfer the encoded JTAG Engine commands and data to the JTAG
Command FIFO.

3. Reads from the BWFIFOn registers. These reads return JTAG TDO data that is collected in response to the
encoded JTAG Engine commands.

4. Decodes the actual TDO data from the response data.

The JTAG Engine provides the connection between stages 2 and 3 of this process.

Note
 The JTAG-AP can connect to up to 8 JTAG devices. The debugger must write to the PSEL register to select the
JTAG port or ports that are connected through the JTAG Port Multiplexer to the JTAG Engine.

There is no direct coupling between the data transfers between:
• The data transfers between the debugger and the JTAG-AP.
• The data transfers between the debugger and the connected JTAG device.

In particular, the debugger does not have to send all the TDI data for a scan before it starts to read the TDO data
from the scan, although it must have sent the complete command header. Indeed, for a long scan, the command and
Response FIFOs might not be large enough for this approach to be possible.

For example:
1. The debugger writes two bytes to BWFIFO2, to specify:

a. A TDI_TDO scan, with 64 bits of TDI data.
b. The TDO data is to be returned to the debugger.

2. The debugger writes a word to BWFIFO4, containing the first 32-bits of TDI data.
3. The debugger reads a word from BRFIFO4, to obtain the first 32-bits of TDO data.
4. The debugger writes another word to BWFIFO4, with the next 32-bits of TDI data.
5. The debugger reads another word from BRFIFO4, to obtain the next 32-bits of TDO data.

This provides a very efficient encapsulation of the JTAG scan chain. However, as described in Stalling accesses on
page 8-167, a read of BRFIFOn stalls if the requested data is not available. Therefore, if the device connected to the
JTAG-AP has a slow clock then the debugger might want to write a number of bytes of TDI data before attempting
to read the first byte of TDO data.

Operation of the JTAG-AP is described in more detail in The JTAG Engine Byte Command Protocol on page 8-169.
8-166 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.2 Operation of the JTAG-AP
8.2.1 JTAG-AP register accesses and accesses to the JTAG scan chain

 APACC accesses to JTAG-AP registers can be divided into two groups:

• Register accesses that do not access the JTAG Engine FIFOs. This group comprises all accesses to the
following registers, as shown in Figure 8-2 on page 8-164:
— CSW.
— PSEL.
— PSTA.
— IDR.

Accesses to these registers always complete immediately. These accesses do not require any communication
with any connected JTAG component.

• Register accesses that access the JTAG Engine FIFOs. This group comprises all accesses to the following
registers, as shown in Figure 8-2 on page 8-164:
— The Byte Response FIFO Registers, BRFIFO1 to BRFIFO4.
— The Byte Command FIFO Registers, BWFIFO1 to BWFIFO4.

These registers are described in BxFIFO1-BxFIFO4. Using these registers to access the JTAG state machine
and JTAG scan chains is described in The JTAG Engine Byte Command Protocol on page 8-169.

Accesses to these registers can be stalled, see Stalling accesses.

Stalling accesses

A JTAG-AP can stall:

• Read accesses to the Byte Response FIFO Registers, BRFIFO1 to BRFIFO4, see Stalling Debug Port read
accesses to the JTAG-AP.

• Write accesses to the Byte Command FIFO Registers, BWFIFO1 to BWFIFO4, see Stalling Debug Port
write accesses to the JTAG-AP.

Stalling Debug Port read accesses to the JTAG-AP

The JTAG-AP can stall DP read accesses to the Byte Response FIFO Registers, BRFIFO1 to BRFIFO4. Depending
which of these registers is targeted, a single register read transfers between one and four bytes of data from the byte
Response FIFO. The register access stalls if the FIFO does not contain enough data. For example, if a DP initiates
a read of the BRFIFO4 register, to transfer four bytes of data from the Response FIFO, and the FIFO only contains
two bytes of data, the access stalls and remains stalled until there are four bytes of data available in the Response
FIFO.

The DP can read the CSW register to find the number of bytes of data available in the Response FIFO. This value
is held in the CSW.RFIFOCNT field. A read of the CSW always completes immediately.

Stalling Debug Port write accesses to the JTAG-AP

The JTAG-AP can stall DP write accesses to the Byte Command FIFO Registers, BWFIFO1 to BWFIFO4.
Depending which of these registers is targeted, a single register write transfers between one and four bytes of data
into the byte Command FIFO. The register access stalls if the FIFO does not contain enough free space to accept all
of the write data. For example, if a DP initiates a write to the BWFIFO3 register, to transfer three bytes of data into
the Command FIFO, when the FIFO has only one byte free, the access stalls and remains stalled until the Command
FIFO is able to accept the three bytes of data.

The DP can read the CSW register to find the number of command bytes held in the Command FIFO and waiting
to be processed by the JTAG Engine. This value is held in the CSW.WFIFOCNT field, and can calculate the number
of free bytes in the FIFO. A read of the CSW always completes immediately.

8.2.2 Resetting connected JTAG devices or subsystems

Resets are triggered using:
• The TRST* signal for JTAG Test Resets.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-167
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.2 Operation of the JTAG-AP
• The nSRSTOUT signal for subsystem resets.

These signals are controlled by the TRST_OUT and SRST_OUT bits of the CSW register. A JTAG test reset might
have to be clocked out for a number of TCK cycles with TMS HIGH to generate the reset. For more information
see Resetting JTAG devices on page 8-180.

8.2.3 Pushed transaction and transaction counter support

A JTAG-AP supports pushed transactions and sequences of transactions to the following registers only:
• PSTA.
• BxFIFO1-BxFIFO4.

For more information see:
• Pushed-compare and pushed-verify operations on page 2-36.
• The transaction counter on page 2-38.
8-168 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.3 The JTAG Engine Byte Command Protocol
8.3 The JTAG Engine Byte Command Protocol
All JTAG commands, including TMS and TDI data, are written to the JTAG-AP Command FIFO through the
interface provided by the four Byte Write FIFO Registers, BWFIFO1 to BWFIFO4. To provide high command
packing, the JTAG commands are encoded as a byte protocol, and depending on which of the Byte Write FIFO
registers is written to between one and four bytes can be written to the FIFO in a single operation. See The Byte
Write FIFO Registers, BWFIFO1 to BWFIFO4 on page 8-177.

Data from the TDO signal from the JTAG Port Multiplexor is transferred to the JTAG-AP Response FIFO. The four
Byte Read FIFO Registers provide an interface to the Response FIFO. See The Byte Read FIFO Registers,
BRFIFO1 to BRFIFO4 on page 8-177.

In the JTAG Engine Byte Command Protocol, all commands are one byte (8-bits). Table 8-2 summarizes the
commands, and the following sections describe them in more detail. Where appropriate, the command descriptions
also describe the TDO data produced by the command, and how this is encoded in the Byte Read FIFOs.

8.3.1 The encoding of the TMS packet

The TMS packet is a single byte. The payload of the packet holds:
• Between one and five data bits to be sent on TMS.
• An indication of whether TDI is held at 0 or at 1 while these bits are sent.

While a TMS packet is being executed, no response is captured from TDO. The normal use of TMS packets is to
move around the JTAG state machine. See The Debug TAP State Machine introduction on page 3-70.

Table 8-3 shows the possible encodings of a TMS packet.

When the JTAG Engine decodes a TMS packet, TDI is held at the value indicated by bit [6] while all of the TMS
data bits are sent. If you have to send TMS bits with different TDI values then you must use multiple TMS packets.

Table 8-2 Summary of JTAG Engine Byte Command Protocol

Bits of the Command byte
Opcode For description see:

[7] [6] [5] [4] [3] [2] [1] [0]

0 Opcode payload TMS The encoding of the TMS packet.

1 0 0 Opcode payload TDI_TDO The encoding of the TDI_TDO packet on page 8-170.

1 0 1 X X X X X Reserved -

1 1 0 X X X X X Reserved -

1 1 1 X X X X X Reserved -

Table 8-3 TMS packet encodings

Command byte
Notes

[7] [6] [5] [4] [3] [2] [1] [0]

0 TDI 1 TMS[4] TMS[3] TMS[2] TMS[1] TMS[0] Five bits of TMS data.

0 TDI 0 1 TMS[3] TMS[2] TMS[1] TMS[0] Four bits of TMS data.

0 TDI 0 0 1 TMS[2] TMS[1] TMS[0] Three bits of TMS data.

0 TDI 0 0 0 1 TMS[1] TMS[0] Two bits of TMS data.

0 TDI 0 0 0 0 1 TMS[0] One bit of TMS data.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-169
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.3 The JTAG Engine Byte Command Protocol
The TMS data bits are sent LSB first. This means that in each row of Table 8-3 on page 8-169, TMS[0] is the first
bit to be sent.

To send the sequence of TMS bits [1, followed by 1, followed by 0, followed by 1] while keeping TDI at 1, the
TMS packet is as shown in Figure 8-3. As the diagram shows, this sequence of TMS signals takes four TCK cycles.

Figure 8-3 TMS packet example with TDI held at 1

To send the sequence of TMS bits [1, followed by 0] while keeping TDI at 0, the TMS packet is as shown in
Figure 8-4. As shown in the diagram, this sequence of TMS signals takes two TCK cycles.

Figure 8-4 TMS packet example with TDI held at 0

8.3.2 The encoding of the TDI_TDO packet

A TDI_TDO packet is a multi-byte packet that is at least two bytes long. It comprises:
• The TDI_TDO opcode byte.
• A second byte, that contains:

— For short packets, of fewer than seven TDI bits, the packed TDI bits.
— Otherwise, the length of the packet.

• If required, between one and sixteen extra bytes containing the TDI bits.

The following subsections describe these bytes.

The TDI_TDO opcode byte, the first byte of the packet

This byte is the packet header. It indicates the start of a TDI_TDO packet, and contains information about the
command sub-type. Figure 8-5 shows the format of this byte.

Figure 8-5 TDI_TDO first byte (opcode) format

0 1 0 1 1 0 1 1

7 6 5 4 3 2 1 0

TMS
packet

TMS[1]TMS[3] TMS[2] TMS[0]

TCK

TDI

TMS TMS[0] TMS[1] TMS[2] TMS[3]

JTAG
signals

TDI

0 0 0 0 0 1 0 1

7 6 5 4 3 2 1 0

TMS
packet

TMS[1] TMS[0]

TCK

TDI

TMS

JTAG
signals

TDI

TMS[0] TMS[1]

[7] [5] [4] [3] [2] [1] [0]

1 0 0 SBZ TMS RTDO TDI UTDI

[6]

TDI_TDO opcode
8-170 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.3 The JTAG Engine Byte Command Protocol
Bits [3:0] are control bits that define the TDI_TDO sub-type. Table 8-4 describes all the bits of the TDI_TDO packet
first byte.

The TDI_TDO length byte, the second byte of the packet

There are two alternative formats for the second byte of the TDI_TDO packet:

Normal In this format, this byte specifies the length of the scan. This can be any value between 1 and 128
bits.

This format is described in The normal format of the TDI_TDO length byte on page 8-172.

Packed The packed format can be used when the required scan is between one and six cycles long. In this
format, this byte contains between one and six bits of TDI data. The length of the scan is determined
by the number of bits of data provided.

This format is described in The packed format of the TDI_TDO length byte on page 8-172.

Table 8-4 TDI_TDO first byte (opcode) format

Bit Name Valuea Description

[7] TDI_TDO 1 The value of these bits indicates that this is the first byte of a TDI_TDO packet

[6] 0

[5] 0

[4] - SBZ Reserved, Should Be Zero.

[3] TMS - TMS value to use on the last cycle of the scan:
0 = TMS LOW on last cycle
1 = TMS HIGH on last cycle.
TMS is always LOW on all the earlier cycles of the scan.

[2] RTDO - Read TDO. This bit determines whether TDO values returned during the scan are captured and
placed in the Response FIFO:
0 = Do not capture TDO
1 = Capture TDO.

Caution
 Do not set this bit to 1 if more than one JTAG port is selected and enabled. If you do, the TDO
values captured are UNKNOWN.

[1] TDI - TDI value to use throughout the scan if UTDI bit is set to 1:
0 = hold TDI signal LOW throughout the scan
1 = hold TDI signal HIGH throughout the scan
The value of the TDI bit is ignored if UTDI is set to 0.

[0] UTDI - Use TDI bit. This bit determines whether the TDI bits to be used during the scan are supplied in
the other bytes of the TDI_TDO packet, or whether the TDI bit, bit [1], specifies the TDI signal
to use throughout the scan:
0 = TDI bits for the scan are supplied in the other bytes of the TDI_TDO packet.
1 = The TDI bit, bit [1], determines the TDI signal to use throughout the scan.
When this bit is set to 1, no TDI data is included in the TDI_TDO packetb.

a. Given for bits that have a fixed value for the TDI_TDO first byte.
b. When the Packed format is used for the second byte of the packet certain bits of that byte are designated as TDI data bits, however the value

of these bits is ignored if UTI = 1, see The TDI_TDO length byte, the second byte of the packet. There is no advantage in using the packed
format when UTDI = 1, but it is possible to do so.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-171
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.3 The JTAG Engine Byte Command Protocol
Note
 This format can be used when the UTDI bit in the first byte of the packet is set to 1. However, there

is no advantage in using the packed format when UTDI = 1, because the normal format is easier to
use, and the TDI_TDO packet is two bytes long whichever format is used.

The normal format of the TDI_TDO length byte

If bit [7] of the second byte of the TDI_TDO packet is zero, the byte is in the normal length byte format. In this
format, bits [6:0] of the byte give the length in bits of the required scan, minus one. This format is shown in
Figure 8-6.

Figure 8-6 TDI_TDO second byte (length byte), normal format

When the TDI_TDO length byte is in the normal format:

• If the UTDI bit of the first byte of the TDI_TDO packet is 0, the TDI data for the scan is packed into
additional bytes of the packet, that follow the length byte. See The data bytes, the third and subsequent bytes
of the packet on page 8-173 for more information.

• If the UTDI bit of the first byte of the TDI_TDO packet is 1 then no TDI data is required for the scan, and
the length byte is the last byte of the packet. Whenever the UTDI bit is set to 1, the TDI_TDO packet is always
two bytes long.

See The TDI_TDO opcode byte, the first byte of the packet on page 8-170 for more information about the UTDI bit.

The packed format of the TDI_TDO length byte

If bit [7] of the second byte of the TDI_TDO packet is one, the byte is in the packed length byte format. In this
format:

• The length of the required scan is implied by the data in bits [6:0] of the length byte, the second byte of the
TDI_TDO packet.

• If the UTDI bit of the first byte of the TDI_TDO packet is 0, the TDI data for the scan is packed into the least
significant bits of the length byte.

• The second byte is the last byte of the TDI_TDO packet, meaning the packet is two bytes long.

Note
 The packed format of the TDI_TDO length byte can only be used if the required scan is of six bits or less.

Figure 8-7 on page 8-173 shows the permitted contents of the length byte when the packed format is used.

[7] [5] [4] [3] [2] [1] [0]

0 (Length of scan) - 1
(Possible scan length of 1 to 128 bits)

[6]

Indicates Normal format
8-172 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.3 The JTAG Engine Byte Command Protocol
Figure 8-7 TDI_TDO second byte (length byte), packed format

The packed format for the TDI_TDO second byte is summarized in Table 8-5.

When the TDI_TDO length byte is in the packed format:

• If the UTDI bit of the first byte of the TDI_TDO packet is 0, the data packed into bits [5:0] of the length byte
determines the value of the TDI signal during the scan. Bit [0] of the length byte always holds TDI[0],
meaning that this bit determines the TDI signal value for the first TCK cycle of the scan.

• If the UTDI bit of the first byte of the TDI_TDO packet is 1, the data packed into bits [5:0] of the length byte
only indicates the length of the required scan, and does not affect the value of the TDI signal during the scan.
For example, if the complete length byte is 0b10001XXX, referring to Figure 8-7 shows that a scan of 3 bits is
required. The TDI signal value, for all three bits, is the TDI value from the first byte of the packet, see
Table 8-3 on page 8-169.

See The TDI_TDO opcode byte, the first byte of the packet on page 8-170 for more information about the UTDI bit.

The data bytes, the third and subsequent bytes of the packet

The TDI_TDO packet is more than two bytes long only when both of the following are true:

• The length byte, the second byte of the packet, is in the normal format. See The normal format of the
TDI_TDO length byte on page 8-172.

• The UTDI bit of the first byte of the packet is 0. See The TDI_TDO opcode byte, the first byte of the packet
on page 8-170.

In this case:
• Bits[6:0] of the length byte contain the required scan length minus one, in bits.

0 100001 TDI[0]

0 10001 TDI[1] TDI[0]

0 1001 TDI[1]TDI[2] TDI[0]

0 101 TDI[1]TDI[2]TDI[3] TDI[0]

01 1 TDI[1]TDI[2]TDI[3]TDI[4] TDI[0]

1 TDI[1]TDI[2]TDI[3]TDI[4]TDI[5]

[7] [5] [4] [3] [2] [1] [0]

1 TDI[0]

[6]

Indicates Packed format

Scan length = 6 bits

Scan length = 5 bits

Scan length = 4 bits

Scan length = 3 bits

Scan length = 2 bits

Scan length = 1 bit

Table 8-5 TDI_TDO second byte (length byte), packed format

Scan length Must be zero bits Data start flag TDI data for scana

a. When the UTDI bit of the first byte of the TDI_TDO packet is 1, the values of these bits are ignored.

6 bits None Bit [6] = 1 Bits [5:0]

5 bits Bit [6] = 0 Bit [5] = 1 Bits [4:0]

4 bits Bits [6:5] = 0b00 Bit [4] = 1 Bits [3:0]

3 bits Bits [6:4] = 0b000 Bit [3] = 1 Bits [2:0]

2 bits Bits [6:3] = 0b0000 Bit [2] = 1 Bits [1:0]

1 bit Bits [6:2] = 0b00000 Bit [1] = 1 Bit [0]
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-173
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.3 The JTAG Engine Byte Command Protocol
• The TDI data for the scan is packed into additional bytes of the packet.

The packing of TDI data uses as few bytes as possible, and the least significant bit of TDI data, TDI[0], is always
bit [0] of the first data byte. This is the TDI signal value for the first TCK cycle of the scan.

The number of data bytes required is the length of the scan divided by eight, rounded up to an integer value. In the
last data byte, any bits that are not required for TDI data must be set to 0. For example, a scan of 21 cycles requires
three data bytes, giving a total TDI_TDO packet size of five bytes. Figure 8-8 shows the formatting of the complete
TDI_TDO packet for this example.

Figure 8-8 TDI_TDO formatting example. Complete packet for a scan of 21 TCK cycles

In Figure 8-8:

Byte 1, the opcode byte

• Bits[7:5] are the TDI_TDO opcode, 0b100.

• Bit[3] is the TMS bit. The value of 1 indicates that TMS must be HIGH for the last cycle of
the scan.

• Bit[2] is the RTDO bit. The value of 1 indicates that TDO data must be captured during the
scan.

Byte 2, the length byte

• Bit[7] = 0 indicates that this length byte is in normal format.

• Bits[6:0] give the value ((length of scan) - 1). This field has the value 0b0010100, which is 20,
meaning the scan length is 21 bits.

Bytes 3 and 4, the first and second data bytes

These bytes contain TDI[15:0], the TDI data for the first 16 cycles of the scan.

Byte 5, the third data byte

This byte contains TDI[20:16], the TDI data for the final five cycles of the scan. Any bits that are
not required for TDI data must be set to 0, so bits [7:5] = 0b000.

8.3.3 Response bytes from a TDI_TDO packet

If the Read TDO (RTDO) bit, bit [2], of a TDI_TDO packet header is set to 1, then the value of the TDO signal is
captured for each TCK cycle of the scan. This captured TDO data is packed into bytes, and each byte is inserted
into the Response FIFO as soon as it is completed.

Figure 8-8 shows a TDI_TDO packet with RTDO = 1.

Caution
 If more than one JTAG port is selected and enabled, the returned TDO values are UNKNOWN.

The number of bytes of TDO data inserted in the Response FIFO is the scan length divided by eight, rounded up to
an integer value. When the scan length is not an exact multiple of 8, zero bits are inserted to pack the last byte of
returned data.

The scan stalls if the Response FIFO is full when a byte of TDO data is ready for insertion.

0 TDI[20]00 TDI[17]TDI[18]TDI[19] TDI[16]

TDI[14]TDI[15] TDI[13] TDI[9]TDI[10]TDI[11]TDI[12] TDI[8]

TDI[6] TDI[1]TDI[2]TDI[3]TDI[4]TDI[5]TDI[7] TDI[0]

00 0 0101 0

0 01100

[7] [5] [4] [3] [2] [1] [0]

1 0

[6]

TDI_TDO opcode, with TMS = 1 and RTDO = 1

Length byte, normal format (bit [7] = 0)

First data byte

Second data byte

Third data byte
8-174 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.3 The JTAG Engine Byte Command Protocol
Figure 8-9 shows the formatting of the TDO data bytes transferred to the Response FIFO for a scan of 21 TCK
cycles where TDO capture is enabled.

Figure 8-9 TDI_TDO response data formatting example. Scan of 21 TCK cycles

If the RTDO bit is set to 0 then no response bytes are placed in the Response FIFO.

See The TDI_TDO opcode byte, the first byte of the packet on page 8-170 for details of the Read TDO (RTDO) bit.

0 TDO[20]00 TDO[17]TDO[18]TDO[19] TDO[16]

TDO[14]TDO[15] TDO[13] TDO[9]TDO[10]TDO[11]TDO[12] TDO[8]

TDO[6] TDO[1]TDO[2]TDO[3]TDO[4]TDO[5]

[7] [5] [4] [3] [2] [1] [0]

TDO[7] TDO[0]

[6]

First data byte transferred to Response FIFO

Second data byte transferred to Response FIFO

Third data byte transferred to Response FIFO
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-175
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.4 JTAG-AP register summary
8.4 JTAG-AP register summary
Table 8-6 lists the JTAG-AP registers, and indicates where they are described in detail. This table shows the memory
map of the JTAG-AP registers, and includes the Identification Register that is described in Chapter 6 The Access
Port (AP).

All of the registers listed in Table 8-6 are required in every JTAG-AP implementation.

Reserved addresses in the register memory map are RES0.

Using the Debug Port to access Access Ports on page 1-24 explains how to access AP registers.

Table 8-6 Summary of JTAG Access Port (JTAG-AP) registers

Address Access Reset value Description, see

0x00 RW a CSW

0x04 RW UNKNOWN PSEL

0x08 RW 0x00000000 PSTA

0x0C RES0 - Reserved

0x10 RO b Read, single entry

BxFIFO1-BxFIFO4

WO - Write, single entry

0x14 RO b Read, two entries

WO - Write, two entries

0x18 RO b Read, three entries

WO - Write, three entries

0x1C RO b Read, four entries

WO - Write, four entries

0x20 - 0xF8 RES0 - Reserved

0xFC RO a IDR

a. See the register description.
b. Accesses to Byte FIFO Read Registers stall until data is available in the FIFO. Therefore they do not have reset values.
8-176 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.5 JTAG-AP register descriptions
8.5 JTAG-AP register descriptions
This section describes each of the JTAG-AP registers. Table 8-6 on page 8-176 shows these registers, and indexes
the full register descriptions in this section. The following subsections describe these registers:
• The Byte FIFO registers, BRFIFO1 to BRFIFO4 and BWFIFO1 to BWFIFO4.
• CSW, Control/Status Word Register on page 8-179.
• PSEL, Port Select register on page 8-181.
• PSTA, Port Status Register on page 8-183.

8.5.1 The Byte FIFO registers, BRFIFO1 to BRFIFO4 and BWFIFO1 to BWFIFO4

The JTAG-AP engine JTAG protocol is byte encoded. The Byte FIFO registers:

• Enable one, two, three or four bytes to be written in parallel to the Command FIFO, by writing to a BWFIFOn
register.

• Enable one, two, three or four bytes to be read in parallel from the Response FIFO, by reading from a
BRFIFOn register.

The BRFIFOn and BWFIFOn registers are mapped to the same JTAG-AP register addresses, with the BRFIFOn
registers being accessed on read operations and the BWFIFOn registers being accessed on write operations.

The registers are organized so that the low order bits of the register address indicate the number of bytes of data to
be written to, or read from, the FIFO:

• The BRFIFO1 and BWFIFO1 registers are at offset 0x10 in the JTAG-AP register space, and transfer a single
data byte from or to a FIFO.

• The BRFIFO2 and BWFIFO2 registers are at offset 0x14 in the JTAG-AP register space, and transfer two data
bytes from or to a FIFO.

• The BRFIFO3 and BWFIFO3 registers are at offset 0x18 in the JTAG-AP register space, and transfer three
data bytes from or to a FIFO.

• The BRFIFO4 and BWFIFO4 registers are at offset 0x1C in the JTAG-AP register space, and transfer four
data bytes from or to a FIFO.

The JTAG Engine Byte Command protocol used for the commands and responses is described in The JTAG Engine
Byte Command Protocol on page 8-169.

The Byte Read FIFO Registers, BRFIFO1 to BRFIFO4

Figure 8-10 shows the register bit assignments for the Byte Read FIFO Registers.

Figure 8-10 Bit assignments for the Byte Read FIFO Registers, BRFIFO1 to BRFIFO4

An AP transaction that reads more responses than are available in the Response FIFO stalls until enough data is
available to match the request. Before initiating an AP transaction to read from the Response FIFO you can read the
CSW.RFIFOCNT field to check the number of response bytes available.

The Byte Write FIFO Registers, BWFIFO1 to BWFIFO4

Figure 8-11 on page 8-178 shows the register bit assignments for the Byte Write FIFO Registers.

First response byteSecond response byteThird response byteFourth response byte

First response byteSecond response byteThird response byteRAZ

First response byteSecond response byteRAZRAZ

First response byteRAZRAZRAZ
31 24 23 16 15 8 7 0

BRFIFO1

BRFIFO2

BRFIFO3

BRFIFO4
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-177
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.5 JTAG-AP register descriptions
Figure 8-11 Bit assignments for the Byte Write FIFO Registers, BWFIFO1 to BWFIFO4

An AP transaction that writes more commands than there is space for in the Command FIFO stalls until there is
enough space in the Command FIFO. Space in the Command FIFO is freed as commands are executed by the JTAG
Engine. Before initiating an AP transaction to write to the Command FIFO you can read the CSW.WFIFOCNT field
to check the number of commands already present in the Command FIFO, and from this value you know the number
of additional commands you can write to the FIFO.

First command byteSecond command byteThird command byteFourth command byte

First command byteSecond command byteThird command byteIgnored

First command byteSecond command byteIgnoredIgnored

First command byteIgnoredIgnoredIgnored
31 24 23 16 15 8 7 0

BWFIFO1

BWFIFO2

BWFIFO3

BWFIFO4
8-178 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.5 JTAG-AP register descriptions
8.5.2 CSW, Control/Status Word Register

The CSW register attributes are:

Purpose

The CSW register configures and controls transfers through the JTAG interface.

Configurations

A JTAG-AP register.

Attributes

The CSW register is:

• At offset 0x00 in the JTAG-AP register space.

• A read/write register, although some bits of the register are read-only.

• See the field descriptions for information about the reset value.

The CSW register bit assignments are:

Figure 8-12 JTAG-AP Control/Status Word Register, CSW, bit assignments

SERACTV, bit[31]

JTAG Engine active. This bit is read-only. The possible values of this flag are:

0 JTAG Engine is inactive if WFIFOCNT is 0.

1 JTAG Engine is processing commands from the Command FIFO.

The JTAG Engine is only guaranteed to be inactive if both SERACTV and WFIFOCNT are zero.
The reset value of this bit is 0.

WFIFOCNT, bits[30:28]

Command FIFO outstanding byte count. This field is read-only. Gives the number of command
bytes held in the Command FIFO that have yet to be processed by the JTAG Engine. The reset value
is of this field 0b000.

Bit[27] Reserved, RES0.

RFIFOCNT, bits[26:24]

Response FIFO outstanding byte count. This field is read-only. Gives the number of bytes of
response data available in the Response FIFO. The reset value of this field is 0b000.

Bits[23:4] Reserved, RES0.

PORTCONNECTED, bit[3]

Selected ports connected. The value of this bit is the logical AND of the PORTCONNECTED
signals from all currently-selected ports. This bit is read-only. The reset value always depends on
the state of the connected signals when the register is read.

31 30 24 23 4 3 2 0

Reserved
RES0

PORTCONNECTED
RFIFOCNT

28 27 26 1

Reserved, RES0
WFIFOCNT
SERACTV

SRSTCONNECTED
TRST_OUT
SRST_OUT
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-179
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.5 JTAG-AP register descriptions
SRSTCONNECTED, bit[2]

Selected ports reset connected. The value of this bit is the logical AND of the SRSTCONNECTED
signals from all currently-selected ports. This bit is read-only. The reset value always depends on
the state of the connected signals when the register is read.

TRST_OUT, bit[1]

This bit specifies the signal to drive out on the TRST* signal for the currently-selected port or ports.
The TRST* signal is active LOW, when this bit is set to 1 the TRST* output is LOW. This bit is
read-only. This bit does not self-reset, it must be cleared to 0 by a software write to this register. The
reset value is 0.

0 Deassert TRST* HIGH.

1 Assert TRST* LOW.

For more information about the use of this bit see Resetting JTAG devices.

SRST_OUT, bit[0]

This bit specifies the signal to drive out on the nSRSTOUT signal for the currently-selected port or
ports. The nSRSTOUT signal is active LOW, when this bit is set to 1 the nSRSTOUT output is
LOW. This bit does not self-reset, it must be cleared to 0 by a software write to this register. The
reset value is 0.

0 Deassert nSRSTOUT HIGH.

1 Assert nSRSTOUT LOW.

Resetting JTAG devices

Although the TRST_OUT bit specifies the value to be driven on the TRST* signal, writing to this bit only causes
the signal to change. It might be necessary to clock the devices connected to the selected JTAG port or ports, by
TCK, to enable the devices to recognize the change on TRST*. This means that the normal process to perform a
Test Reset of the selected JTAG ports is:

1. Write 1 to the CSW.TRST_OUT bit, to specify that TRST* must be asserted LOW.

2. Drive a sequence of at least five TMS = 1 clocks from the JTAG Engine. You can do this by issuing the
command 0b00111111 to the JTAG Engine. This sequence guarantees the TAP enters the Test-Logic/Reset
state, even if has no TRST* connection.

3. Write 0 to the CSW.TRST_OUT bit, so that the TRST* signal is HIGH on subsequent TCK cycles.

If the JTAG connection is not clocked in this way while TRST* is asserted LOW then some or all TAPs might not
reset.
8-180 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.5 JTAG-AP register descriptions
8.5.3 PSEL, Port Select register

The PSEL register attributes are:

Purpose

The PSEL register selects one or more JTAG ports.

Configurations

A JTAG-AP register.

Attributes

The PSEL register is:

• At offset 0x04 in the JTAG-AP register space.

• A read/write register.

• Reset value is UNKNOWN.

The PSEL register bit assignments are:

Figure 8-13 JTAG-AP Port Select Register, PSEL, bit assignments

Bits[31:8]

Reserved, RES0.

PSELn, bit[n], for n = 0 to 7

Select control for JTAG port n. If JTAG port n is not connected to the JTAG-AP, it is
IMPLEMENTATION DEFINED whether PSELn is read/write or RES0. The possible values of this bit are:

0 JTAG port n is not selected.

1 JTAG port n is selected.

A JTAG port is enabled if all of the following apply:

• The port is connected to the JTAG-AP.

• The PSELn bit for the port is set to 1.

• The PORTENABLED signal from the port to the JTAG-AP is asserted HIGH.

Caution
 You must only write to this register when the JTAG Engine is inactive and the WFIFO is empty. Writing PSEL at
any other time has UNPREDICTABLE results.

This means that before writing to PSEL you must read the JTAG-AP CSW and check that the SERACTV and
WFIFOCNT fields are both zero.

When more than one JTAG port is connected to the JTAG-AP, the same values for TDI, TMS, TRST* and
nSRSTOUT are driven to all ports that are selected in the PSEL Register. If more than one port is selected in the
PSEL register the return values from TDO are UNKNOWN.

This selection model means that, with the normal serially-connected model for JTAG, it is possible to update
multiple TAPs in parallel. This functionality can be very useful, for example to provide synchronized behavior.

31 4 3 2 0

Reserved
RES0

PSEL7

1

PSEL6
PSEL5
PSEL4

8 7 6 5

PSEL0
PSEL1
PSEL2
PSEL3
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-181
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.5 JTAG-AP register descriptions
Because each JTAG port might contain multiple TAPs connected in series, the process for updating TAPs in parallel
is:

1. Scan each JTAG port in turn, by selecting each port in turn in the PSEL register. When scanning a port, leave
the required TAP in the TAP Exit1 or Exit2 state.

2. When all ports have been scanned in this way, write to PSEL again to select all of the required ports.

3. Scan through the TAP Update state. All of the TAPs are updated synchronously.

Note
 In the normal serially-connected JTAG model, Instruction Register updates are always made in parallel.
8-182 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

8 The JTAG Access Port (JTAG-AP)
8.5 JTAG-AP register descriptions
8.5.4 PSTA, Port Status Register

The PSTA register attributes are:.

Purpose

The PSTA register indicates whenever a JTAG port that is connected and selected has been disabled,
even if the disable is only transient.

Configurations

 A JTAG-AP register.

Attributes

The PSTA register is:

• At offset 0x08 in the JTAG-AP register space.

• A read/write register.

• Reset value is 0.

The PSTA register bit assignments are:

Figure 8-14 JTAG-AP Port Status Register, PSTA, bit assignments

Bits[31:8]

Reserved, RES0.

PSTAn, bit[n], for n = 0 to 7

Sticky status flag for JTAG port n.

This bit is R/W1C.

If JTAG port n is connected to the JTAG-AP and PSEL.PSELn is set to 1, then PSTAn is set to 1 if
the port is disabled. The flag captures and holds the fact that a connected and selected port has been
disabled or powered down, even if this is only transient.

Table 8-7 shows the behavior on reads and writes:

Note
 If a port is not connected to the JTAG-AP, its PSTAn bit is RAZ.

31 4 3 2 0

Reserved
RES0

PSTA7

1

PSTA6
PSTA5
PSTA4

8 7 6 5

PSTA0
PSTA1
PSTA2
PSTA3

Table 8-7 Behavior on reads and writes of PSTAn

Value Meaning on reads Action on writes

0 Port has not been disabled No action, write is ignored

1 Port has been disabled Clear bit to 0
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-183
ID080813 Non-Confidential

8 The JTAG Access Port (JTAG-AP)
8.5 JTAG-AP register descriptions
8-184 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 9
Component and Peripheral ID Registers

This chapter describes the Component and Peripheral ID Registers that form part of the register space of every
debug component that complies with the ARM Peripheral Identification specification. This means that these
registers form part of the debug register files and ROM tables shown in Figure 1-5 on page 1-29, and in other
illustrations of debug systems.

This chapter contains the following sections:
• Component and Peripheral ID registers on page 9-186.
• The Component ID Registers on page 9-187.
• The Peripheral ID Registers on page 9-191.

Note
 Contact ARM if you require more details of the ARM Peripheral Identification specification.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 9-185
ID080813 Non-Confidential

9 Component and Peripheral ID Registers
9.1 Component and Peripheral ID registers
9.1 Component and Peripheral ID registers
The Component and Peripheral ID registers provide a generic model for component identification.

A generic component occupies a continuous register space that covers one or more 4KB blocks. The Peripheral and
Component ID registers are always located at the end of this register space, with the Component ID Registers
occupying the last four words of this block. This means that, if a component occupies more than one 4KB block,
the Component and Peripheral ID Registers are located at the end of the last block.

This section gives a summary of the registers, including the memory map of the registers in the final 4KB block of
register address space. The registers are described in detail in:
• The Component ID Registers on page 9-187.
• The Peripheral ID Registers on page 9-191.

9.1.1 Summary of Component and Peripheral ID Registers

Table 9-1 lists the Component and Peripheral ID Registers, and indicates where each register is described in detail.
This table shows the memory map of these registers, at the end of the final 4KB block of register space.

All of the registers listed in Table 9-1 are required in every debug component implementation.

Table 9-1 Summary of Component and Peripheral ID Registers

Address Name Access Value

0xFD0 PIDR4 RO IMPLEMENTATION DEFINEDa

a. See the register description for more information.

0xFD4 PIDR5, see PID5-PID7 RO 0x00000000

0xFD8 PIDR6, see PID5-PID7 RO 0x00000000

0xFDC PIDR7, see PID5-PID7 RO 0x00000000

0xFE0 PIDR0 RO IMPLEMENTATION DEFINEDa

0xFE4 PIDR1 RO IMPLEMENTATION DEFINEDa

0xFE8 PIDR2 RO IMPLEMENTATION DEFINEDa

0xFEC PIDR3 RO IMPLEMENTATION DEFINEDa

0xFF0 CIDR0 RO 0x0000000D

0xFF4 CIDR1 RO IMPLEMENTATION DEFINEDa

0xFF8 CIDR2 RO 0x00000005

0xFFC CIDR3 RO 0x000000B1
9-186 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

9 Component and Peripheral ID Registers
9.2 The Component ID Registers
9.2 The Component ID Registers
There are four read-only Component Identification Registers, Component ID register 3 to Component ID register 0,
CIDR3-CIDR0. Table 9-2 lists these registers:

These registers occupy the last four words of a 4KB register space of a component. If the register space of a
component occupies more than one 4KB block they are the last four words of the last 4KB block.

The Component ID Registers:

• Identify the 4KB block of memory space as a component, by the use of a signature.

• Identify the component type, by the contents of the signature. This means that the contents of the Component
ID Registers act as a preamble to a component type-specific set of identification registers.

Only bits [7:0] of each register are used. Figure 9-1 shows the concept of a single 32-bit component ID, obtained
from the four Component Identification Registers.

Figure 9-1 Mapping between the Component ID Registers and the Component ID value

The Component Class field identifies the type of the component. Table 9-3 lists the permitted values for this field.
It also shows which components have a standardized layout for the remainder of the 4KB register space.

Table 9-2 Summary of the Component Identification Registers

Register Address

CIDR0 0xFF0

CIDR1 0xFF4

CIDR2 0xFF8

CIDR3 0xFFC

1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 b b b b 0 0 0 0 0 0 0 0 1 1 0 1

CID3 register

Conceptual 32-bit component ID

Actual ComponentID register fields

7 0

CID2 register CID1 register CID0 register

Component ID

7 0 7 0 7 0

31 2423 1615 8 7 0

4 3

1211

PreamblePreamble Component
Class

Table 9-3 Component Class values in the Component ID

Component class Class description Standardized layout

0x0 Generic verification component None.

0x1 ROM Table See Chapter 10 ROM Tables.

0x2 - 0x8 Reserved -

0x9 Debug component See the CoreSight Architecture Specification.

0xA Reserved -

0xB Peripheral Test Block (PTB) None.

0xC Reserved -
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 9-187
ID080813 Non-Confidential

9 Component and Peripheral ID Registers
9.2 The Component ID Registers
As shown in Table 9-3 on page 9-187, ROM table components have a standard register space layout. This is defined
in Chapter 10 ROM Tables.

Debug components have a standard layout of Peripheral Identification Registers, as defined in the CoreSight
Architecture Specification. These registers are summarized in The Peripheral ID Registers on page 9-191.

Note
 The CoreSight Architecture Specification requires CoreSight components to implement other registers in the
address space 0xF00 to 0xFFF, in addition to the Component ID Registers and Peripheral ID Registers.

Processors that comply with the ARMv7 Debug Architecture, and trace macrocells that comply with the ETM
Architecture Specification version 3.2 or later, identify themselves as Debug components. For more information see
the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition and the ETM Architecture Specification.

The following sections describe each of the Component ID Registers.

0xD OptimoDE Data Engine SubSystem (DESS) component None.

0xE Generic IP component None.

0xF PrimeCell peripheral None.

Table 9-3 Component Class values in the Component ID (continued)

Component class Class description Standardized layout
9-188 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

9 Component and Peripheral ID Registers
9.2 The Component ID Registers
9.2.1 CIDR0, Component ID Register 0

The CIDR0 characteristics are:

Purpose Provides bits[7:0] of the 32-bit conceptual Component ID, see Figure 9-1 on page 9-187.

Attributes A read-only register at address offset 0xFF0.

The CIDR0 register bit assignments are:

Bits[31:8] Reserved, RES0.

PRMBL_0, bits[7:0]

Preamble byte 0. This byte has the value 0x0D.

9.2.2 CIDR1, Component ID Register 1

The CIDR1 characteristics are:

Purpose Provides bits[15:8] of the 32-bit conceptual Component ID, see Figure 9-1 on page 9-187.

Attributes A read-only register at address offset 0xFF4.

The CIDR1 register bit assignments are:

Bits[31:8] Reserved, RES0.

CLASS, bits[7:4]

Component class. Table 9-3 on page 9-187 shows the possible values of this field.

PRMBL_1, bits[3:0]

Preamble bits[11:8]. This field has the value 0x0.

10 0 0 0 1 1Reserved, RES0

31 0

0

PRMBL_0

8 7

0CLASS 0 0Reserved, RES0

31 0

0

PRMBL_1

8 7 4 3
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 9-189
ID080813 Non-Confidential

9 Component and Peripheral ID Registers
9.2 The Component ID Registers
9.2.3 CIDR2, Component ID Register 2

The CIDR2 characteristics are:

Purpose Provides bits[23:16] of the 32-bit conceptual Component ID, see Figure 9-1 on page 9-187.

Attributes A read-only register at address offset 0xFF8.

The CIDR2 register bit assignments are:

Bits[31:8] Reserved, RES0.

PRMBL_2, bits[7:0]

Preamble byte 2. This byte has the value 0x05.

9.2.4 CIDR3, Component ID Register 3

The CIDR3 characteristics are:

Purpose Provides bits[31:24] of the 32-bit conceptual Component ID, see Figure 9-1 on page 9-187.

Attributes A read-only register at address offset 0xFFC.

The CIDR3 Register bit assignments are:

Bits[31:8] Reserved, RES0.

PRMBL_3, bits[7:0]

Preamble byte 3. This byte has the value 0xB1.

10 0 0 0 0 1Reserved, RES0

31 0

0

PRMBL_2

8 7

01 0 1 1 0 1Reserved, RES0

31 0

0

PRMBL_3

8 7
9-190 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

9 Component and Peripheral ID Registers
9.3 The Peripheral ID Registers
9.3 The Peripheral ID Registers
The peripheral identification registers provide standard information required by all components that conform to the
generic ID registers specification. They identify a peripheral within a particular namespace.

A set of Peripheral ID Registers comprises eight registers, Peripheral ID register 7 to Peripheral ID register 0,
PIDR7-PIDR0. Table 9-4 lists the Peripheral ID registers in order of their address offsets, and gives their offsets
within a 4KB register space.

Note
 Table 9-4 lists the Peripheral ID registers in address order. This does not match the numerical order of the registers,
PIDR0-PIDR7.

Only bits [7:0] of each Peripheral ID Register are used, with bits [31:8] reserved. Together, the eight Peripheral ID
Registers can be considered to define a single 64-bit Peripheral ID, as shown in Figure 9-2.

Figure 9-2 Mapping between the Peripheral ID Registers and the Peripheral ID value

Figure 9-3 shows the standard Peripheral ID fields in the single conceptual Peripheral ID, for a peripheral designed
by ARM.

Figure 9-3 Peripheral ID field descriptions

Table 9-4 Summary of the peripheral identification registers

Register Address

PIDR4 0xFD0

PIDR5 0xFD4

PIDR6 0xFD8

PIDR7 0xFDC

PIDR0 0xFE0

PIDR1 0xFE4

PIDR2 0xFE8

PIDR3 0xFEC

0

PID0 register

7 07 07 07 07 07 07 07

PID1 registerPID2 registerPID3 registerPID4 registerPID5 registerPID6 registerPID7 register

63 16 15 8 0724 2332 3140 3948 4756 55

Conceptual 64-bit Peripheral ID

0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 1 0 1 1 11 0 1

Conceptual 64-bit Peripheral ID

63

07

24 2332 3140 3948 4756 55

PID0 registerPID1 registerPID2 registerPID3 registerPID4 registerPID5 registerPID6 registerPID7 register

Reserved,
RES0

PartNumberJEP106
ID code

4KB
count

RevAnd

JEP106
Continuation code

Customer
modified

Revision

Uses JEP106 ID code

Bits with no value shown are IMPLEMENTATION DEFINED.
Other bits not shown as Reserved are shown for an implementation designed by ARM.

0

07070707070707

111218192027283536
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 9-191
ID080813 Non-Confidential

9 Component and Peripheral ID Registers
9.3 The Peripheral ID Registers
Note
 Figure 9-3 on page 9-191 shows the short description of each of the Peripheral ID fields, not the actual PIDR register
field names.

Table 9-5 lists the standard Peripheral ID fields, and shows where this information is held in the Peripheral ID
Registers.

For more information about these fields, see the CoreSight Architecture Specification.

Note
 In legacy components, an ASCII Identity Code, allocated by ARM, is used rather than the JEP106 ID code. In such
a component:

• The 7-bit ASCII Identity Code replaces the 7-bit JEP106 ID code shown in Figure 9-3 on page 9-191. This
field is split between the Peripheral ID1 and Peripheral ID2 Registers.

On legacy components designed by ARM this field has the value 0x41.

Table 9-5 Register fields for the peripheral identification registers

Name Size Description Register fields

SIZE 4 bits 4KB count. Log2 of the number of 4KB blocks occupied by the component. The
number of blocks occupied by a component must be a power of two, and this field
gives that power. The first four possible values of this field are:
0b0000 1 block.
0b0001 2 blocks.
0b0010 4 blocks.
0b0011 8 blocks.

PIDR4.SIZE

DES_0,
DES_1,
DES_2

4+7 bits JEP106 code. Identifies the designer of the component. This field consists of both:
• A 7-bit identity code. DES_ defines bits[3:0]. and DES_1 defines bits[6:4].
• A 4-bit continuation code, defined by DES_2.
For an implementation designed by ARM, the continuation code is 0x4 and the
identity code is 0x3B.

PIDR1.DES_0,
PIDR2.DES_1,
PIDR4.DES_2

REVAND 4 bits RevAnd. Manufacturer Revision Number. Indicates a late modification to the
component, usually as a result of an Engineering Change Order.
This field starts at 0x0 and is incremented by the integrated circuit manufacturer on
metal fixes.

PIDR3.REVAND

CMOD 4 bits Customer modified. Indicates an endorsed modification to the component.
If the system designer cannot modify the implementation supplied by the designer
of the ADI then this field is RAZ.

PIDR3.CMOD

REVISION 4 bits Revision of the peripheral.
Starts at 0x0 and increments by 1 at both major and minor revisions.

PIDR2.REVISION

JEDEC 1 bit Uses JEP106 ID code. This bit is set to 1 when a JEP106 ID code is used.
This bit must be 1 on new implementations.

PIDR2.JEDEC

PART_0,
PART_1

12 bits PartNumber. PART_1 defines PartNumber[11:8], and PART_0 defines
PartNumber[7:0]. The part number for the component.
Each organization designing components to the ARM Peripheral Identification
specifications has its own part number list.
For components with a component class 0x9, multiple components are permitted
to share the same Part number so long as they have different DEVTYPEs.
However, ARM recommends that each component has a unique Part number.

PIDR0.PART_0,
PIDR1.PART_1
9-192 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

9 Component and Peripheral ID Registers
9.3 The Peripheral ID Registers
• The Uses JEP106 ID code bit, bit [3] of the Peripheral ID2 Register, is zero.

• The Peripheral ID4 Register is not implemented.

Legacy Peripheral ID layout on page 9-197 is an example of the use of the ASCII Identity Code.

ASCII Identity Codes must not be used for new designs.

The fields present in each Peripheral ID Register are indicated in the following sections, where the registers are
described in register name order (ID0 to ID7). Table 9-4 on page 9-191 lists the register numbers and addresses of
these registers, in register address order, which does not match the register name order.

9.3.1 PIDR0, Peripheral ID Register 0

The PIDR0 characteristics are:

Purpose Provides bits[7:0] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFE0.

The PIDR0 register bit assignments are:

Bits[31:8] Reserved, RES0.

PART_0, bits[7:0]

PartNumber[7:0]. Bits[7:0] of the IMPLEMENTATION DEFINED part number.

See Table 9-5 on page 9-192 for more information about the register fields.

9.3.2 PIDR1, Peripheral ID Register 1

The PIDR1 characteristics are:

Purpose Provides bits[15:8] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFE4.

The PIDR1 register bit assignments are:

Bits[31:8] Reserved, RES0.

DES_0, bits[7:4]

JEP106 ID code[3:0]. When PIDR2.JEDEC is RAO, bits[3:0] of the IMPLEMENTATION DEFINED
JEP106 ID code.

For an implementation designed by ARM, the JEP106 ID code is 0x3B and therefore this field is 0xB.

On a legacy component, when PIDR2.JEDEC is RAZ, this field is ASCII Identity Code[3:0]. See
also the description of the PIDR2[2:0] field.

PART_1, bits[3:0]

PartNumber[11:8]. Bits[11:8] of the IMPLEMENTATION DEFINED part number.

See Table 9-5 on page 9-192 for more information about the register fields.

PART_0Reserved, RES0

31 08 7

DES_0 PART_1Reserved, RES0

31 038 7 4
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 9-193
ID080813 Non-Confidential

9 Component and Peripheral ID Registers
9.3 The Peripheral ID Registers
9.3.3 PIDR2, Peripheral ID Register 2

The PIDR2 characteristics are:

Purpose Provides bits[23:16] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFE8.

The PIDR2 Register bit assignments are:

Bits[31:8] Reserved, RES0.

REVISION, bits[7:4]

The IMPLEMENTATION DEFINED revision number for the implementation.

JEDEC, bit[3]

Uses JEP106 ID code. Indicates whether the Peripheral ID uses a JEP106 ID code.

For new implementations, including all ARMv7 and later implementations, this bit must be RAO,
indicating that the Peripheral ID uses a JEP106 ID code.

On a legacy component, this bit might be RAZ, indicating that the Peripheral ID uses an ASCII
Identity Code, and that PIDR2[2:0] are ASCII Identity Code[6:4].

DES_1, bits[2:0]

JEP106 ID code[6:4]. When the JEDEC field is RAO, bits[6:4] of the IMPLEMENTATION DEFINED
JEP106 ID code.

For an implementation designed by ARM, the JEP106 ID code is 0x3B and therefore this field is
0b011.

On a legacy component, when the JEDEC field is RAZ, this field is ASCII Identity Code[6:4].

See Table 9-5 on page 9-192 for more information about the register fields.

DES_1REVISION 1Reserved, RES0

31 03

JEDEC

8 7 4 2
9-194 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

9 Component and Peripheral ID Registers
9.3 The Peripheral ID Registers
9.3.4 PIDR3, Peripheral ID Register 3

The PIDR3 characteristics are:

Purpose Provides bits[31:24] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFEC.

The PIDR3 register bit assignments are:

Bits[31:8] Reserved, RES0.

REVAND, bits[7:4]

RevAnd. The IMPLEMENTATION DEFINED manufacturing revision number for the implementation.

CMOD, bits[3:0]

Customer modified. An IMPLEMENTATION DEFINED value that indicates an endorsed modification
to the implementation.

If the system designer cannot modify the implementation supplied by the designer of the ADI then
this field is RAZ.

See Table 9-5 on page 9-192 for more information about the register fields.

9.3.5 PIDR4, Peripheral ID Register 4

The PIDR4 characteristics are:

Purpose Provides bits[39:32] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFD0.

Note
 On a legacy component, when bit PIDR2[3] is RAZ, PIDR4 is not implemented. However, the register at 0xFD0
might be used by the component.

The PIDR4 register bit assignments are:

Bits[31:8] Reserved, RES0.

SIZE, bits[7:4]

4KB count. Log2 of the number of 4KB blocks occupied by the component.

DES_2, bits[3:0]

JEP106 Continuation code. The IMPLEMENTATION DEFINED JEP106 Continuation code.

For an implementation designed by ARM this field is 0x4.

See Table 9-5 on page 9-192 for more information about the register fields.

REVAND CMODReserved, RES0

31 038 7 4

SIZE DES_2Reserved, RES0

31 038 7 4
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 9-195
ID080813 Non-Confidential

9 Component and Peripheral ID Registers
9.3 The Peripheral ID Registers
9.3.6 PIDR5-PIDR7, Peripheral ID Registers 5-7

Registers PIDR5-PIDR7 do not hold any information. Table 9-4 on page 9-191 shows the address offsets of these
registers.

Note
 On legacy components, when bit PIDR2[3] is RAZ, the Peripheral ID5 to Peripheral ID7 registers PIDR5-PIDR7
are not implemented. However, the registers at 0xFD4, 0xFD8, and 0xFDC might be used by the component.

The bit assignments for registers PIDR5-PIDR7 are:

Bits[31:8] Reserved, RES0.

Reserved, bits[7:0]

Reserved, RES0.

Reserved, RES0Reserved, RES0

31 08 7
9-196 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

9 Component and Peripheral ID Registers
9.3 The Peripheral ID Registers
9.3.7 Legacy Peripheral ID layout

Table 9-6 shows the format of the peripheral identification registers in a legacy component

A legacy peripheral component does not use JEP106 Identity Codes, and only implements four Peripheral ID
Registers.

The Configuration Register, that corresponds to the Peripheral ID3 Register, contains information specific to the
peripheral about build options. For example, it might indicate the width of a bus in the implementation.

Table 9-6 Identification Registers for a legacy component

Address Access Register Bits Value Description

0xFD0
-0xFDC

- - [31:0] - Reserved.
Might be used by component. If so, value is
IMPLEMENTATION DEFINED.

0xFE0 RO Peripheral ID0 [31:8] - Reserved. RAZ.

[7:0] IMPLEMENTATION DEFINED Part number[7:0]

0xFE4 RO Peripheral ID1 [31:8] - Reserved. RAZ.

[7:4] IMPLEMENTATION DEFINED ASCII Identity code[3:0]

[3:0] IMPLEMENTATION DEFINED Part number[11:8]

0xFE8 RO Peripheral ID2 [31:8] - Reserved. RAZ.

[7:4] IMPLEMENTATION DEFINED Revision number of peripheral.

[3] 0 ASCII Identity code is used.

[2:0] IMPLEMENTATION DEFINED ASCII Identity code[6:4].

0xFE8 RO Peripheral ID3 [31:8] - Reserved. RAZ.

[7:0] IMPLEMENTATION DEFINED Configuration Register.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 9-197
ID080813 Non-Confidential

9 Component and Peripheral ID Registers
9.3 The Peripheral ID Registers
9-198 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Chapter 10
ROM Tables

The chapter describes ROM Tables. It includes the following sections:
• ROM Table overview on page 10-200.
• ROM Table entries on page 10-202.
• The MEMTYPE register on page 10-205.
• Component and Peripheral ID Registers on page 10-206.
• ROM Table hierarchies on page 10-207.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 10-199
ID080813 Non-Confidential

10 ROM Tables
10.1 ROM Table overview
10.1 ROM Table overview
ROM Tables hold information about debug components.

• When a Debug Access Port connects to a single debug component, a ROM Table is not required. However,
a designer might choose to implement such a system to include a ROM Table, as shown in Figure 1-5 on
page 1-29.

• If a Debug Access Port connects to more than one debug component then the system must include at least
one ROM Table.

A ROM Table connects to a bus controlled by a Memory Access Port (MEM-AP). In other words, the ROM Table
is part of the address space of the memory system that is connected to a MEM-AP. There can be more than one ROM
Table connected to a single bus.

A ROM Table:
• Always occupies 4KB of memory.
• Is a read-only device. Writes to ROM Table addresses are ignored.

A ROM Table is divided into a number of regions, as shown in Table 10-1 and Figure 10-1 on page 10-201.

Table 10-1 ROM Table regions

Region Start address End address Notes

ROM Table entries 0x000 IMPLEMENTATION DEFINED See ROM Table entries on page 10-202.

Reserved region IMPLEMENTATION
DEFINED

0xFCB Unused area of ROM Table. See The unused area of
the ROM Table on page 10-204

MEMTYPE register 0xFCC 0xFCF -

Peripheral ID registers 0xFD0 0xFEF See Component and Peripheral ID Registers on
page 10-206.

Component ID registers 0xFF0 0xFFF
10-200 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

10 ROM Tables
10.1 ROM Table overview
Figure 10-1 ROM Table format

Note
 The ROM Table area from 0xF00 to 0xFCB is reserved, RES0. The last possible ROM Table entry is at 0xEFC.

0x00000000

Reserved, RES0

Address

0x000

Table Entry 1[31:0]

Reserved, RES0

MEMTYPE

Peripheral ID4

Peripheral ID5

Peripheral ID2

Peripheral ID3

0x004

0x000+4n

0xFC8

0xFCC

0xFD0

0xFD4

0xFE8

0xFEC

Component ID2

Component ID3

0xFF8

0xFFC

ROM
Table
entries

Table end
marker

Reserved
region

MEMTYPE
and ID

Registers

Table Entry 0[31:0]
31 0

Table Entry n[31:0]

Reserved, RES0

0x004+4n

0x008+4n
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 10-201
ID080813 Non-Confidential

10 ROM Tables
10.2 ROM Table entries
10.2 ROM Table entries
The series of ROM Table entries start at the base address of the ROM Table. The values of these entries depend on
the subsystem that is implemented.

Each ROM Table entry:
• Describes a single debug component within the system.
• Is a single 32-bit word.

Table 10-2 shows the format of a single entry in the ROM Table.

Table 10-2 Format of a ROM Table entry

Bits Field name Description

[31:12] Address offset The base address of the component, relative to the base address of this ROM Table.
Negative values are permitted, using two’s complement.

Note
 The Address offset field of a ROM Table entry must not be zero, even if bit [0] of the entry is
0. This is because a zero address offset points back to this ROM Table.

See Component descriptions and the component base address on page 10-203 for more
information.

[11:9] - Reserved. RES0.

[8:4] Power domain IDa Indicates the power domain of the component. This field:
• Is only valid if bit[2]==1., otherwise this field must be RAZ.
• Supports up to 32 power domains using values 0x00 to 0x1F.

[3] - Reserved. RES0.

[2] Power domain ID valida Indicates if the Power domain ID field contains a Power domain ID:
0 Power domain ID not provided.
1 Power domain ID provided in bits[8:4].

[1] Format This bit indicates the format of the ROM Table. It is RAO, indicating a 32-bit ROM Table
format.

[0] Entry present This bit indicates whether an entry is present at this location in the ROM Table. Its possible
values are:
0 Entry not present.
1 Entry present.
See Empty entries and the end of the ROM Table on page 10-204 for more information.

a. See CoreSight Architecture Specification for more information on Power domains.
10-202 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

10 ROM Tables
10.2 ROM Table entries
10.2.1 Component descriptions and the component base address

Each debug component occupies one or more 4KB blocks of address space. This block of address space is referred
to as the Debug Register File for the component. See Figure 1-3 on page 1-28, and other figures in Chapter 1 for
examples.

The Address offset field of a ROM Table entry points to the start of the last 4KB block of the address space of the
component. This block always contains the Component and Peripheral ID Registers for the component, starting at
offset 0xFD0 from the start of the block. The 4KB count field, bits PIDR4[7:4], specifies the number of 4KB blocks
for the component. Therefore, the process for finding the start of the address space for a component is:

1. Read the ROM Table entry for the component, and extract the Address offset for the component. The Address
offset is bits [31:12] of the ROM Table entry.

2. Use the Address offset, together with the base address of the ROM Table, to calculate the base address of the
component. The component base address is:

Component_Base_Address = ROM_Base_Address + (Address_Offset << 12)

When performing this calculation, remember that the Address_Offset value might be a two’s complement
negative value.

Component_Base_Address is the start address of the final 4KB block of the address space for the component.

3. Read the Peripheral ID4 Register for the component. The address of this register is:

Peripheral_ID4_address = Component_Base_Address + 0xFD0

4. Extract the 4KB count field, bits [7:4], from the value of the Peripheral ID4 Register.

5. Use the 4KB count value to calculate the start address of the address space for the component.

If the 4KB count field is 0b0000, indicating a count value of 1, the address space for the component starts at
the Component_Base_Address obtained at stage 2.

In general, the ROM Table indicates all the valid addresses in the memory map of the connection from the DAP to
the system being debugged. For more information about accesses to addresses that are not pointed to by the ROM
Table see MEMTYPE.

Note
 As explained in this section, the ROM Table only indicates the base address of each component, and you must
examine the Peripheral ID Registers for the component to check whether the component occupies more than one
4KB memory block.

ARM recommends that the debug component base address is aligned to the largest translation granule supported by
any processor that can access the component. For an ARMv8 processor, this might be 64KB.

For more information about the Component and Peripheral ID Registers see Chapter 9 Component and Peripheral
ID Registers.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 10-203
ID080813 Non-Confidential

10 ROM Tables
10.2 ROM Table entries
10.2.2 Empty entries and the end of the ROM Table

The descriptions of the debug components are stored in sequential locations in the ROM Table, starting at the ROM
Table base address. However, a ROM Table entry can be marked as not present by setting bit [0] of the entry to 0.

When scanning the ROM Table, an entry marked as not present must be skipped. However you must not assume
that an entry that is marked as not present represents the end of the ROM Table. For example, a ROM Table might
be generated using static configuration tie-offs that indicate the presence or absence of particular devices, giving
not present entries in the ROM Table.

Note
 If the top-level ROM Table is generated using static configuration tie-offs, then the Peripheral ID Register values
must also depend on these tie-offs. This is because each possible topology must have a unique Peripheral ID.

ROM Table hierarchies on page 10-207 describes how there can be a hierarchy of ROM Tables, and that such a
hierarchy must have a top-level ROM Table.

The end of the ROM Table

Immediately after the last component entry in the ROM Table there must be a blank ROM Table entry with the value
0x00000000.

This blank entry marks the end of the ROM Table.

The unused area of the ROM Table

A ROM Table always:
• Occupies a single 4KB block of memory.
• Has its ROM Table entries starting at offset 0x000 in the ROM Table.
• Has a blank entry to indicate the end of the ROM Table entries.
• Has a reserved area, starting at offset 0xF00 in the ROM Table.
• Has its MEMTYPE and ID Registers starting at offset 0xFCC in the ROM Table.

This means that there is almost always an unused area in the ROM Table, between the blank entry that marks the
end of the ROM Table entries and the start of the reserved area at offset 0xF00. This unused area is reserved, RES0.
Similarly, the reserved area starting at offset 0xF00 and ending at 0xFCB, immediately before the MEMTYPE register,
is RES0.

Note
 • A ROM Table can hold up to 960 entries.
• Unless a ROM Table is holding its maximum number of entries there is an unused area between the blank

entry that marks the end of the ROM Table entries and the start of the reserved area at offset 0xF00.
• If a ROM Table holds its maximum number of entries, there is no blank entry indicating the end of the ROM

Table. The table entries end at offset 0xF00 in the ROM Table.
An implementation is unlikely to require the maximum number of entries in a ROM Table. However, ROM
Table hierarchies on page 10-207 describes how larger ROM Tables can be constructed.
10-204 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

10 ROM Tables
10.3 The MEMTYPE register
10.3 The MEMTYPE register
The MEMTYPE register characteristics are:

Purpose Identifies the type of memory present on the bus that connects the DAP to the ROM Table.
In particular, it identifies whether system memory is connected to the bus.

Configurations Every ROM Table must implement a MEMTYPE register.

Attributes A read-only register, at offset 0xFCC from the base address of the ROM Table.

The MEMTYPE register bit assignments are:

Bits[31:1] Reserved, RES0.

SYSMEM, bit[0]

System memory present. Indicates whether system memory is present on the bus that connects to
the ROM Table. The possible values are:
0 System memory not present on bus. This is a dedicated debug bus.
1 System memory is also present on this bus.

MEMTYPE.SYSMEM indicates the memory accesses that the DAP can make:

When SYSMEM is RAZ

The ROM Table indicates all the valid addresses in the memory system that the DAP is connected
to, and the result of accessing any other address is UNPREDICTABLE. For more information, see
Component descriptions and the component base address on page 10-203.

When SYSMEM is RAO

There might be other valid addresses in the memory system that the DAP is connected to. The result
of accessing these addresses is IMPLEMENTATION DEFINED, and:

• The ADIv5 specification does not include any mechanism that the DAP can use to discover
what addresses it can access, other than those indicated by the ROM Table.

• If the DAP accesses addresses other than those indicated by the ROM Table this might have
side effects on the system that the DAP is connected to.

Reserved, RES0

31 0

SYSMEM

1

ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 10-205
ID080813 Non-Confidential

10 ROM Tables
10.4 Component and Peripheral ID Registers
10.4 Component and Peripheral ID Registers
Any ROM Table must implement a set of Component and Peripheral ID Registers, that start at offset 0xFD0 in the
ROM Table. Chapter 9 Component and Peripheral ID Registers describes these registers. This section only
describes particular features of the registers when they relate to a ROM Table.

In a ROM Table implementation:
• The Component class field, CIDR1.CLASS is 0x1, identifying the component as a ROM Table.
• The PIDR4.SIZE field must be 0. This is because a ROM Table must occupy a single 4KB block of memory.

10.4.1 Identifying the debug SoC or platform

The top-level ROM Table Peripheral ID Registers uniquely identify the SoC or platform. If a system has more than
one Memory Access Port with a connected ROM Table then the information from the Peripheral ID Registers of all
of the top-level ROM Tables, considered collectively, is required to uniquely identify the SoC or platform. An
example of a system with multiple MEM-APs is shown in Figure 1-6 on page 1-30.

If there is any change in the set of components identified by the ROM Table, or any change in the connections to
those components, then the Peripheral ID Registers must be updated to reflect the change.

Each possible configuration must be uniquely identifiable from the Peripheral ID Register values. This is because
the Peripheral ID can be used by the debugger to name the description of the system.

When a debugger performs topology detection on the system that it connects to through a DAP, it can save its
description of the system with the Peripheral ID. If that system is connected to the debugger again, the debugger
can retrieve that saved description, avoiding any requirement for topology detection.

If two different systems have the same Peripheral ID a debugger might retrieve an incorrect description. If this
situation occurs, you must force the debugger to perform topology detection again.

If the DAP implements DPv2, the DP TARGETID register also uniquely identifies the SoC or platform, and ARM
deprecates use of the top-level ROM Table Peripheral ID registers as a unique identifier by tools.

Note
 • If SWJ-DP is implemented, it is not required that both the JTAG-DP and SW-DP implement the same DP

architecture version, and therefore TARGETID. Tools might be using a DP that does not implement DPv2.

• Deprecation of the use of the top-level ROM Table peripheral ID registers by tools does not remove the
requirement on implementations to provide a unique identifier in the top-level ROM Table peripheral ID
registers. Future releases of this manual might remove this requirement.
10-206 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

10 ROM Tables
10.5 ROM Table hierarchies
10.5 ROM Table hierarchies
Normally, each ROM Table entry points to the memory space of a debug component. The Component and
Peripheral ID Registers for that component start at offset 0xFD0 from the base address of the component, as
Component descriptions and the component base address on page 10-203 describes. The Component class field,
bits [7:4], of the Component ID1 Register identify the type of the component. This field is described in The
Component ID Registers on page 9-187.

A ROM Table entry can point to another ROM Table. In this case:

• The Component class field of the Component ID1 Register in the memory area indicated by the ROM Table
Entry is 0x1, indicating that the component is another ROM Table.

• The top level ROM Table and the second-level ROM Table must both be examined to discover all the debug
components in the system.

A ROM Table at any level can include entries that point to lower-level ROM Tables. Also, any ROM Table can
include more than one entry that points to lower-level ROM Tables. This means that a hierarchy of ROM Tables can
exist. All ROM Tables within that hierarchy must be scanned to discover all of the debug components in the system.

The MEM-AP BASE register must point to the top level ROM Table in the hierarchy.

Figure 10-2 shows an example of a ROM Table hierarchy.

Figure 10-2 ROM Table hierarchy example

A hierarchy of ROM Tables might increase the total number of ROM Table entries in the system.

However, a hierarchy might be implemented for some other reason, for example to reflect the logical organization
of the debug components of the system. There might be only a few entries in each ROM Table within a hierarchy.

10.5.1 Peripheral ID Registers in lower-level ROM Tables

The Peripheral ID value obtained from the Peripheral ID Registers of any ROM Table that is not a top-level ROM
Table is not used by the debugger, and does not have to be unique. This applies to the Peripheral ID of all ROM
Tables that are only accessed through other ROM Tables.

The contents of the Peripheral ID Registers in lower-level ROM Tables might be:

• Set to a Peripheral ID value that represents the subsystem described by the ROM Table, enabling that
subsystem to be implemented as the only component of another debug system.

• Set to the Peripheral ID value of the top-level ROM Table.

• Set to a value reserved by the implementor to indicate a lower-level ROM Table.

These are only examples of the values that might be used for the Peripheral ID Registers of lower-level ROM Tables.
This specification does place any requirement on the values used for these registers.

ROM Table B

ROM Table C

Entry 4

Entry 3

ROM Table E

ROM Table A

Entry 2

Entry 5

Top level

ROM Table D

Entry 2

ROM Table F

Level 2 Level 3 Level 4

MEM-AP
BASE Register
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 10-207
ID080813 Non-Confidential

10 ROM Tables
10.5 ROM Table hierarchies
Note
 The Component ID Registers of lower-level ROM Tables must be implemented as described in The Component ID
Registers on page 9-187. It is particularly important that the Component class field of the Component ID1 Register
correctly identifies the component as a ROM Table.

10.5.2 Prohibited ROM Table references

Every debug component within a system must appear only once in the ROM Table, or ROM Table hierarchy, that
is visible to an external debugger. Figure 10-3 shows a prohibited case, where entries in ROM Tables B and C both
point to ROM Table D.

Figure 10-3 Prohibited duplicate ROM Table reference from ROM Table

Figure 10-4 shows a similar prohibited case, where entries in ROM Table A and MEM-AP 2 both point to ROM
Table B.

Figure 10-4 Prohibited duplicate ROM Table reference from MEM-AP

In addition, circular ROM Table references are prohibited. This means that a ROM Table entry must not point to a
ROM Table that directly or indirectly points to itself. In particular, ROM Table entries must not point back to the
top-level ROM Table. This is shown in Figure 10-5 on page 10-209, where both ROM Table B and ROM Table C
have prohibited links back to ROM Table A.

ROM Table B

ROM Table C

ROM Table A

Entry 2

Entry 5

Top level

Entry 4

Entry 3

ROM Table D

Level 2 Level 3

MEM-AP
BASE Register

ROM Table BROM Table A

Top level Level 1

MEM-AP 1
BASE Register

MEM-AP 2
BASE Register

Entry 4
10-208 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

10 ROM Tables
10.5 ROM Table hierarchies
Figure 10-5 Prohibited circular ROM Table references

Note
 There is no requirement that components in separate ROM Table hierarchies must be in separate systems. This
includes multiple APs in a single DAP, and multiple DAPs. For example, if MEM-AP 1 in DAP 1 points to a
hierarchy of ROM Tables which includes a pointer to trace macrocell A, and MEM-AP 2 in DAP 2 points to a
hierarchy of ROM Tables which includes a pointer to trace sink B, then trace from trace macrocell A can be
collected by trace sink B, as shown in Figure 10-6.

Figure 10-6 Components in separate ROM Table hierarchies

ROM Table B ROM Table CROM Table A
Entry 1

Top level

Entry 3

Level 2 Level 3

Entry 2

MEM-AP
BASE Register

Trace macrocell AROM Table A

Top level Level 1

1 BASE
Register

MEM-AP 2
BASE Register

Entry 4

Trace sink BROM Table B

Entry 3

DAP 1

DAP 2
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 10-209
ID080813 Non-Confidential

10 ROM Tables
10.5 ROM Table hierarchies
10-210 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix A
Standard Memory Access Port Definitions

This appendix provides information on implementing the Memory Access Port (MEM-AP). It contains the
following sections:
• Introduction on page A-212.
• AMBA AXI3 and AXI4 on page A-213.
• AMBA AXI4 with ACE-Lite on page A-215.
• AMBA AHB on page A-217.
• AMBA APB2 and APB3 on page A-218.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. A-211
ID080813 Non-Confidential

Appendix A Standard Memory Access Port Definitions
A.1 Introduction
A.1 Introduction
The Memory Access Port (MEM-AP) programmers’ model includes IMPLEMENTATION DEFINED features. This
appendix provides reference implementation options for implementers and users of MEM-APs when connecting to
standard memory interfaces. In particular, it provides the recommended interpretations of the CSW.{Prot, SPIDEN,
Type, AddrInc, Size} fields.
A-212 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix A Standard Memory Access Port Definitions
A.2 AMBA AXI3 and AXI4
A.2 AMBA AXI3 and AXI4
For more information, see AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and
ACE-Lite™. For AMBA AXI3 and AXI4 implementations, the CSW register is implemented as follows:

Prot, bits [30:24] For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits [30:28]
Drives AxPROT[2:0], where x is R for reads and W for writes, see Table A-1.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior
depends on the vale of CSW.SPIDEN. For values in CSW.Prot[29]:

1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is
HIGH.

0 Secure transfer requested. If CSW.SPIDEN is 1, ARPROT[1] or
AWPROT[1] is LOW. If CSW.SPIDEN is 0, no transfer is initiated.

CACHE[3:0], bits [27:24]
Drives AxCACHE[3:0], where x is R for reads and W for writes, see
Table A-2.

Note
 AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE.

The reset value of CSW.Prot is 0b0110000.

SPIDEN, bit [23] The CSW.SPIDEN bit reflects the state of the CoreSight authentication signal, SPIDEN.

Type, bits [15:12] RES0.

Mode, bits [11:8] RES0.

AddrInc, bits [5:4] CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on
page 7-138.

Table A-1 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged

Table A-2 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. A-213
ID080813 Non-Confidential

Appendix A Standard Memory Access Port Definitions
A.2 AMBA AXI3 and AXI4
Size, bits [3:0] CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION
DEFINED whether larger access sizes are supported.
A-214 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix A Standard Memory Access Port Definitions
A.3 AMBA AXI4 with ACE-Lite
A.3 AMBA AXI4 with ACE-Lite
For more information, see the AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE
and ACE-Lite™. For AMBA AXI4 implementations with ACE-Lite the following registers are implemented as
shown:
• CSW register implementation.
• MBT register implementation on page A-216.

A.3.1 CSW register implementation

The CSW register is implemented as follows:

Prot, bits[30:24] For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits[30:28]
Drives AxPROT[2:0], where x is R for reads and W for writes, see Table A-3.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior
depends on the value of CSW.SPIDEN. For values in CSW.Prot[29]:

1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is
HIGH.

0 Secure transfer requested. If CSW.SPIDEN is 1, ARPROT[1] or
AWPROT[1] is LOW. If CSW.SPIDEN is 0, no transfer is initiated.

CACHE[3:0], bits[27:24]
Drives AxCACHE[3:0], where x is R for reads and W for writes, see
Table A-4.

Note
 AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE.

The reset value of CSW.Prot is 0b0110000.

SPIDEN, bit[23] The CSW.SPIDEN bit reflects the state of the CoreSight authentication signal, SPIDEN.

Table A-3 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged

Table A-4 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. A-215
ID080813 Non-Confidential

Appendix A Standard Memory Access Port Definitions
A.3 AMBA AXI4 with ACE-Lite
Type, bits[15:12] The CSW.Type field drives the AXI AxDOMAIN signals, where x is R for reads and W for
writes.

The settings for the CSW.Type bit field are:

Bit[15] . Reserved, RES0.

DOMAIN[1:0], bits [14:13]
Possible values are:

0b00 Non-shareable.

0b01 Inner shareable, includes additional masters.

0b10 Outer shareable, contains all masters in the Inner shareable domain
and can include additional masters.

0b11 System, includes all masters.

EnMBT, bit [12]
Enable MBT accesses.
It is IMPLEMENTATION DEFINED whether this field is RW or RAO. If it is RW,
the reset value is 0, and must be set to 1 before writing to the MBT register.

Mode, bits [11:8] It is IMPLEMENTATION DEFINED whether this field is RW or RO. If it is RW, the reset value
is 0b0000, and must be set to 0b0001 before writing to the MBT register. If it is RO, then it
has the fixed value 0b0001.

AddrInc, bits [5:4] CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on
page 7-138.

Size, bits [3:0] CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION
DEFINED whether larger access sizes are supported.

A.3.2 MBT register implementation

The MBT register is implemented as follows:

Attributes MBT register is a read/write register.

Bits[31:3] Reserved, RES0.

BarTran, bits[2:1] Possible values are:

0b00 Reserved

0b01 Memory barrier

0b10 Reserved

0b11 Synchronization barrier.

Bit[0] On reads:

0 Barrier transaction in progress.

1 No barrier transaction in progress.

SBO on writes.
A-216 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix A Standard Memory Access Port Definitions
A.4 AMBA AHB
A.4 AMBA AHB
For more information, see the AMBA® Specification (Rev 2.0) and the AMBA® 3 AHB-Lite™ Protocol Specification.
For AMBA AHB implementations, the CSW register is implemented as follows:

Prot, bits[30:24] The CSW.Prot field drives the AHB HPROT signals. The settings for the CSW.Prot field
are:

Bit[30] Reserved, SBO. If this bit is written as 0 the behavior of an
AHB-AP transaction is UNPREDICTABLE.

MasterType, bit[29] Master Type bit. MasterType permits the AHB-AP to mimic a
second AHB master by driving a different value on
HMASTER[3:0]. Support for this function is IMPLEMENTATION
DEFINED. Valid values for this bit are:

1 Drive HMASTER[3:0] with the bus master ID for the
AHB-AP.

0 Drive HMASTER[3:0] with the bus master ID for the
second bus master.

If this function is not implemented the bit is RAZ/WI.

HPROT[4], Allocate, bit[28]
Drives HPROT[4], Allocate. HPROT[4] is an ARMv6 extension
to AHB. For more information, see the ARM1136JF-S™ and
ARM1136J-S™ Technical Reference Manual.
If the AHB master interface does not support the ARMv6 extension
to AHB, this bit is RAZ/WI.

HPROT[3:0], bits[27:24]
Drives HPROT[3:0]. See Table A-5. Support for each HPROT
signal in the AHB master interface is IMPLEMENTATION DEFINED.

The reset value of CSW.Prot is 0b1000011.

SPIDEN, bit[23] It is IMPLEMENTATION DEFINED whether the CSW.SPIDEN bit reflects the state of the
CoreSight authentication signal, SPIDEN. Otherwise, the CSW.SPIDEN bit is RAZ.

This bit is always read-only.

Note
 AMBA AHB does not support Security Extensions.

Type, bits[15:12] RES0.

Mode, bits[11:8] RES0.

AddrInc, bits[5:4] Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See
Packed transfers on page 7-138.

Size, bits[3:0] CSW.Size must support word, half-word, and byte size accesses.

Table A-5 CSW.Prot mapping

Bit HPROT signal Description Description when not implemented at the AHB master interface

27 HPROT[3] Cacheable RAZ/WI

26 HPROT[2] Bufferable RAZ/WI

25 HPROT[1] Privileged RAO/WI

24 HPROT[0] Data RAO/WI
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. A-217
ID080813 Non-Confidential

Appendix A Standard Memory Access Port Definitions
A.5 AMBA APB2 and APB3
A.5 AMBA APB2 and APB3
For more information see the AMBA® Specification (Rev 2.0), and the AMBA® 4 APB™ Protocol Specification For
AMBA APB2 and APB3 implementations, the CSW register is implemented as follows:

Prot, bits[30:24] RES0.

SPIDEN, bit[23] RES0.

Type, bits[15:12] RES0.

Mode, bits[11:8] RES0.

AddrInc, bits[5:4] CSW.AddrInc does not support the Increment Packed mode of transfer. See Packed
transfers on page 7-138.

Size, bits[3:0] CSW.Size only supports word accesses, and reads as 0b010. Writes to CSW.Size are
ignored.
A-218 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix B
Cross-over with the ARM Architecture

This appendix describes the required or recommended options for the ARM Debug Interface for the ARMv6-M and
all ARMv7 and ARMv8 architecture profiles. It contains the following sections:
• Introduction on page B-220.
• ARMv6-M architecture on page B-221.
• ARMv7-M architecture profile on page B-222.
• ARMv7-A without Large Physical Address Extension and ARMv7-R architecture profiles on page B-223.
• ARMv7-A with Large Physical Address Extension and ARMv8-A architecture profiles on page B-224.
• Summary of the required ADIv5 implementations on page B-225.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. B-219
ID080813 Non-Confidential

Appendix B Cross-over with the ARM Architecture
B.1 Introduction
B.1 Introduction
The ARM Debug Interface v5 is the recommended external debug interface for ARMv6-M, all ARMv7, and all
ARMv8 architecture profiles.

When designing with ARM Cortex™ processor cores and ARM CoreSight technology, the choice of Debug Access
Port (DAP) features might be at the discretion of the system designer. ARM recommends that system designers
choose a DAP that implements all the recommended features for all ARM architecture processor cores contained in
the design.

ADIv5 might also be used with other architecture variants. For example, an ADIv5 JTAG Access Port (JTAG-AP)
might access a Debug Test Access Port (DBGTAP), as defined by ARM Debug Interface v4 (ADIv4) for ARMv6
architecture processors.
B-220 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix B Cross-over with the ARM Architecture
B.2 ARMv6-M architecture
B.2 ARMv6-M architecture
The ARMv6-M architecture requires an ADIv5-compliant DAP.

ARM recommends that the Debug Port (DP) implements the SWD interface, either through a SW-DP or SWJ-DP.
A JTAG-DP is permitted. ARM recommends that the DP implements the MINDP model. See MINDP, Minimal
Debug Port extension on page 2-36.

There must be one MEM-AP for each processor. Each MEM-AP must be capable of addressing the complete
memory space visible to the processor, including all debug peripherals and the NVIC. The MEM-AP must support
byte, half-word and word size accesses to memory. The MEM-AP is not required to support the packed increment
transfer mode.

Other Access Ports (APs) can be connected to the DAP.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. B-221
ID080813 Non-Confidential

Appendix B Cross-over with the ARM Architecture
B.3 ARMv7-M architecture profile
B.3 ARMv7-M architecture profile
The ARMv7-M architecture profile requires an ADIv5-compliant DAP.

ARM recommends that the DP implements the SWD interface, either through a SW-DP or SWJ-DP. A JTAG-DP
is permitted. ARM recommends that the DP does not implement the MINDP model.

There must be one MEM-AP for each processor. Each MEM-AP must be capable of addressing the complete
memory space visible to the processor, including all debug peripherals and the NVIC. The MEM-AP must support
byte, half-word and word size accesses to memory. ARM recommends that the MEM-AP supports the packed
increment transfer mode.

Other APs can be connected to the DAP.
B-222 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix B Cross-over with the ARM Architecture
B.4 ARMv7-A without Large Physical Address Extension and ARMv7-R architecture profiles
B.4 ARMv7-A without Large Physical Address Extension and ARMv7-R architecture
profiles

The ARMv7-A and ARMv7-R architecture profiles do not require an ADIv5-compliant DAP. Although the ADIv5
interface is not required for compliance with ARMv7, the ARM development tools require this interface to be
implemented.

Where an ADIv5-compliant DAP is implemented, ARM recommends that the DP implements the JTAG and Serial
Wire Debug interfaces through an SWJ-DP. ARM recommends that the DP does not implement the MINDP model.

Many processors can be connected to a single MEM-AP. The MEM-AP must only be capable of addressing the
debug peripherals of the connected processors. If the MEM-AP can only address the debug peripherals, it is only
required to support word size accesses to memory, and therefore is not required to support the packed increment
transfer mode.

ARM recommends that debug implementations include a MEM-AP that can address the complete memory space
visible to the processor or processors. This might be a second MEM-AP in the DAP. ARM recommends that a
MEM-AP that can access the complete memory space supports byte, half-word and word size accesses to memory.
ARM recommends that this MEM-AP supports the packed increment transfer mode.

Other APs can also be connected to the DAP.

Note
 Do not confuse the ARMv7-A Large Physical Address Extension with the ADIv5 MEM-AP Large Physical Address
Extension.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. B-223
ID080813 Non-Confidential

Appendix B Cross-over with the ARM Architecture
B.5 ARMv7-A with Large Physical Address Extension and ARMv8-A architecture profiles
B.5 ARMv7-A with Large Physical Address Extension and ARMv8-A architecture
profiles

The requirements for ARMv7-A with Large Physical Address Extension and ARMv8-A architecture profiles are
the same as for the ARMv7-A without Large Physical Address Extension and ARMv7-R architecture profiles, with
the following additions for any MEM-AP with system access:

• MEM-AP Large Physical Address Extension, up to at least the size supported by the processor.

• For ARMv7-A systems with the Large Physical Address Extension, ARM recommends the MEM-AP
implements the Large Data Extension providing at least doubleword accesses, to allow for atomic update of
page table entries.

• For ARMv8-A systems, the MEM-AP must implement the Large Data Extension providing at least
doubleword accesses.
B-224 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix B Cross-over with the ARM Architecture
B.6 Summary of the required ADIv5 implementations
B.6 Summary of the required ADIv5 implementations
Table B-1 summarizes the required and recommended components of an ADIv5 implementation for each of the
ARM architecture variants for which ADIv5 is the required or recommended DAP.

Table B-1 Recommended ADIv5 implementations for ARM Architecture variants

Component ARMv6-M ARMv7-M

ARMv7-A
without
Large
Physical
Address
Extension
and
ARMv7-R

ARMv7-A
with Large
Physical
Address
Extension
and
ARMv8-A

ADIv5 DAP Required Required Recommended Recommended

DP JTAG-DP Permitted Permitted Permitted Permitted

SW-DP - - Permitted Permitted

SWJ-DP - - Recommended Recommended

SWJ-DP or SW-DP Recommended Recommended - -

Not MINDP Permitted Recommended Recommended Recommended

MEM-AP One per processor Required Required Permitted Permitted

Access to system memory Required Required Permitted Permitted

Support for 8-bit and 16-bit accesses Required Required Required only
if system
access is
supported

Required only
if system
access is
supported

Support for 32-bit accesses Required Required Required Required

Support for 64-bit accesses Permitted Permitted Permitted Required

Support for large physical addresses Not permitted Not permitted Permitted Required if
system access
is supported

Support for packed increment transfers Permitted Recommended Recommended Recommended
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. B-225
ID080813 Non-Confidential

Appendix B Cross-over with the ARM Architecture
B.6 Summary of the required ADIv5 implementations
B-226 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C
Pseudocode Definition

This appendix provides a definition of the pseudocode used in this document, and lists the helper procedures and
functions used by pseudocode to perform useful architecture-specific jobs. It contains the following sections:
• About ARM pseudocode on page C-228.
• Data types on page C-229.
• Expressions on page C-233.
• Operators and built-in functions on page C-235.
• Statements and program structure on page C-240.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-227
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.1 About ARM pseudocode
C.1 About ARM pseudocode
ARM pseudocode provides precise descriptions of some areas of the architecture. The following sections describe
the ARMv7 pseudocode in detail:
• Data types on page C-229.
• Expressions on page C-233.
• Operators and built-in functions on page C-235.
• Statements and program structure on page C-240.

C.1.1 General limitations of ARM pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, SUBARCHITECTURE_DEFINED, UNDEFINED, and UNPREDICTABLE
indicate behavior that differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs. This means that these statements terminate
pseudocode execution.

For more information, see Simple statements on page C-240.
C-228 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C Pseudocode Definition
C.2 Data types
C.2 Data types
This section describes:
• General data type rules.
• Bitstrings.
• Integers on page C-230.
• Reals on page C-230.
• Booleans on page C-230.
• Enumerations on page C-230.
• Lists on page C-231.
• Arrays on page C-232.

C.2.1 General data type rules

ARM architecture pseudocode is a strongly-typed language. Every constant and variable is of one of the following
types:
• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• List.
• Array.

The type of a constant is determined by its syntax. The type of a variable is normally determined by assignment to
the variable, with the variable being implicitly declared to be of the same type as whatever is assigned to it. For
example, the assignments x = 1, y = '1', and z = TRUE implicitly declare the variables x, y, and z to have types
integer, bitstring of length 1, and Boolean, respectively.

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

C.2.2 Bitstrings

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 1.

The type name for bitstrings of length N is bits(N). A synonym of bits(1) is bit.

Bitstring constants are written as a single quotation mark, followed by the string of 0s and 1s, followed by another
single quotation mark. For example, the two constants of type bit are '0' and '1'. Spaces can be included in
bitstrings for clarity.

A special form of bitstring constant with 'x' bits is permitted in bitstring comparisons, see Equality and
non-equality testing on page C-235.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is,
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings derived from encoding diagrams, this order matches the way they are printed.

Bitstrings are the only concrete data type in pseudocode, in the sense that they correspond directly to the contents
of, for example, registers, memory locations, and instructions. All of the remaining data types are abstract.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-229
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.2 Data types
C.2.3 Integers

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, associated with suitable functions to interpret
those bitstrings as integers.

The type name for integers is integer.

Integer constants are normally written in decimal, such as 0, 15, –1234. They can also be written in C-style
hexadecimal, such as 0x55 or 0x80000000. Hexadecimal integer constants are treated as positive unless they have a
preceding minus sign. For example, 0x80000000 is the integer +231. If –231 must be written in hexadecimal, it must be
written as –0x80000000.

C.2.4 Reals

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, associated with suitable functions to interpret those bitstrings as reals.

The type name for reals is real.

Real constants are written in decimal with a decimal point. This means 0 is an integer constant but 0.0 is a real
constant.

C.2.5 Booleans

A Boolean is a logical true or false value.

The type name for Booleans is boolean. This is not the same type as bit, which is a length–1 bitstring. Boolean
constants are TRUE and FALSE.

C.2.6 Enumerations

An enumeration is a defined set of symbolic constants, such as:

enumeration InstrSet {InstrSet_A32, InstrSet_T32, InstrSet_A64};

An enumeration always contains at least one symbolic constant, and a symbolic constant must not be shared
between enumerations.

Enumerations must be declared explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the symbolic constants to it. By convention, each of the symbolic constants starts with the name of
the enumeration followed by an underscore. The name of the enumeration is its type name, or type, and the symbolic
constants are its possible constants.

Note
 A Boolean is a pre-declared enumeration that does not follow the normal naming convention and it has a special
role in some pseudocode constructs, such as if statements, for example:

enumeration boolean {FALSE, TRUE};
C-230 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C Pseudocode Definition
C.2 Data types
C.2.7 Lists

A list is an ordered set of other data items, separated by commas and enclosed in parentheses, for example:

(bits(32) shifter_result, bit shifter_carry_out)

A list always contains at least one data item.

Lists are often used as the return type for a function that returns multiple results. For example, this list at the start
of this section is the return type of the function Shift_C() that performs a standard ARM shift or rotation, when its
first operand is of type bits(32).

Some specific pseudocode operators use lists surrounded by other forms of bracketing than the (…) parentheses.
These are:

• Bitstring extraction operators, that use lists of bit numbers or ranges of bit numbers surrounded by angle
brackets <…>.

• Array indexing, that uses lists of array indexes surrounded by square brackets […].

• Array-like function argument passing, that uses lists of function arguments surrounded by square brackets
[…].

Each combination of data types in a list is a separate type, with type name given by listing the data types. This means
that the example list at the start of this section is of type (bits(32), bit). The general principle that types can be
declared by assignment extends to the types of the individual list items in a list. For example:

(shift_t, shift_n) = ('00', 0);

implicitly declares shift_t, shift_n, and (shift_t, shift_n) to be of types bits(2), integer, and (bits(2),
integer), respectively.

A list type can also be explicitly named, with explicitly named elements in the list. For example:

type ShiftSpec is (bits(2) shift, integer amount);

After this definition and the declaration:

ShiftSpec abc;

the elements of the resulting list can then be referred to as abc.shift, and abc.amount. This qualified naming of list
elements is only permitted for variables that have been explicitly declared, not for those that have been declared by
assignment only.

Explicitly naming a type does not alter what type it is. For example, after the definition of ShiftSpec, ShiftSpec, and
(bits(2), integer) are two different names for the same type, not the names of two different types. To avoid
ambiguity in references to list elements, it is an error to declare a list variable multiple times using different names
of its type or to qualify it with list element names not associated with the name by which it was declared.

An item in a list that is being assigned to can be written as "-" to indicate that the corresponding item of the assigned
list value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

List constants are written as a list of constants of the appropriate types, for example the ('00', 0) in the earlier
example.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-231
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.2 Data types
C.2.8 Arrays

Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

// The names of the Banked core registers.

enumeration RName {RName_0usr, RName_1usr, RName_2usr, RName_3usr, RName_4usr, RName_5usr,
 RName_6usr, RName_7usr, RName_8usr, RName_8fiq, RName_9usr, RName_9fiq,
 RName_10usr, RName_10fiq, RName_11usr, RName_11fiq, RName_12usr, RName_12fiq,
 RName_SPusr, RName_SPfiq, RName_SPirq, RName_SPsvc,
 RName_SPabt, RName_SPund, RName_SPmon, RName_SPhyp,
 RName_LRusr, RName_LRfiq, RName_LRirq, RName_LRsvc,
 RName_LRabt, RName_LRund, RName_LRmon,
 RName_PC};

array bits(8) _Memory[0..0xFFFFFFFF];

Arrays are always explicitly declared, and there is no notation for a constant array. Arrays always contain at least
one element, because:
• Enumerations always contain at least one symbolic constant.
• Integer ranges always contain at least one integer.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD
element processing.
C-232 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C Pseudocode Definition
C.3 Expressions
C.3 Expressions
This section describes:
• General expression syntax.
• Operators and functions - polymorphism and prototypes on page C-234.
• Precedence rules on page C-234.

C.3.1 General expression syntax

An expression is one of the following:
• A constant.
• A variable, optionally preceded by a data type name to declare its type.
• The word UNKNOWN preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register described in the text is to be regarded as declaring a correspondingly named bitstring variable, and
that variable has the stated behavior of the register. For example, if a bit of a register is defined as RAZ/WI, then
the corresponding bit of its variable reads as 0 and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not constitute a security hole and must not be promoted as providing any useful information to software.

Note
 Some earlier documentation describes this as an UNPREDICTABLE value. UNKNOWN values are similar to the
definition of UNPREDICTABLE, but do not indicate that the entire architectural state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

Every expression has a data type:

• For a constant, this data type is determined by the syntax of the constant.

• For a variable, there are the following possible sources for the data type:

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.

• For a function, the definition of the function determines the data type.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-233
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.3 Expressions
C.3.2 Operators and functions - polymorphism and prototypes

Operators and functions in pseudocode can be polymorphic, producing different functionality when applied to
different data types. Each resulting form of an operator or function has a different prototype definition. For example,
the operator + has forms that act on various combinations of integers, reals, and bitstrings.

One particularly common form of polymorphism is between bitstrings of different lengths. This is represented by
using bits(N), bits(M), or similar, in the prototype definition.

C.3.3 Precedence rules

The precedence rules for expressions are:

1. Constants, variables, and function invocations are evaluated with higher priority than any operators using
their results.

2. Expressions on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but this is
not necessary if all permitted precedence orders under the type rules necessarily lead to the same result. For
example, if i, j, and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k
> 0 is not.
C-234 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C Pseudocode Definition
C.4 Operators and built-in functions
C.4 Operators and built-in functions
This section describes:
• Operations on generic types.
• Operations on Booleans.
• Bitstring manipulation.
• Arithmetic on page C-238.

C.4.1 Operations on generic types

The following operations are defined for all types.

Equality and non-equality testing

Any two values x and y of the same type can be tested for equality by the expression x == y and for non-equality by
the expression x != y. In both cases, the result is of type boolean.

A special form of comparison is defined with a bitstring constant that includes 'x' bits in addition to '0' and '1'
bits. The bits corresponding to the 'x' bits are ignored in determining the result of the comparison. For example, if
opcode is a 4-bit bitstring, opcode == '1x0x' is equivalent to opcode<3> == '1' && opcode<1> == '0'.

Note
 This special form is permitted in the implied equality comparisons in when parts of case … of … structures.

Conditional selection

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

C.4.2 Operations on Booleans

If x is a Boolean, then !x is its logical inverse.

If x and y are Booleans, then x && y is the result of ANDing them together. As in the C language, if x is FALSE, the
result is determined to be FALSE without evaluating y.

If x and y are Booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result
is determined to be TRUE without evaluating y.

If x and y are Booleans, then x ^ y is the result of exclusive-ORing them together.

C.4.3 Bitstring manipulation

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:
• The bitstring length function Len(x) returns the length of x as an integer.
• TopBit(x) is the leftmost bit of x. Using bitstring extraction, this means:

TopBit(x)= x<Len(x)–1>.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-235
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.4 Operators and built-in functions
Bitstring concatenation and replication

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.

If x is a bitstring and n is an integer with n > 0:
• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together
• Zeros(n) = Replicate('0', n), Ones(n) = Replicate('1', n).

Bitstring extraction

The bitstring extraction operator extracts a bitstring from either another bitstring or an integer. Its syntax is
x<integer_list>, where x is the integer or bitstring being extracted from, and <integer_list> is a list of integers
enclosed in angle brackets rather than the usual parentheses. The length of the resulting bitstring is equal to the
number of integers in <integer_list>. In x<integer_list>, each of the integers in <integer_list> must be:
• >= 0

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, let y be the unique integer in the range 0 to 2^(i+1)–1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.
Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

In <integer_list>, the notation i:j with i >= j is shorthand for the integers in order from i down to j, with both
end values included. For example, instr<31:28> is shorthand for instr<31, 30, 29, 28>.

The expression x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than
once in <integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram
for the ABORT register shows its bit<3> as WDERRCLR. In such cases, the syntax ABORT.WDERRCLR is used as a
more readable synonym for ABORT<3>.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained
by logically ANDing, ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring count

If x is a bitstring, BitCount(x) produces an integer result equal to the number of bits of x that are ones.
C-236 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C Pseudocode Definition
C.4 Operators and built-in functions
Testing a bitstring for being all zero or all ones

If x is a bitstring:
• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones.
• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of its bits that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of its bits that are ones. If all of its bits are zeros,
HighestSetBit(x) = –1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N – 1 – HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign
bit itself, and is in the range 0 to N–1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N–1:1> EOR x<N–2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i–Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i–Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt(x) is the integer whose two’s complement representation is x:

// SInt()
// ======

integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 if x<N-1> == '1' then result = result - 2^N;
 return result;
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-237
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.4 Operators and built-in functions
UInt(x) is the integer whose unsigned representation is x:

// UInt()

// ======

integer UInt(bits(N) x)

 result = 0;

 for i = 0 to N-1

 if x<i> == '1' then result = result + 2^i;

 return result;

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument:

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

C.4.4 Arithmetic

Most pseudocode arithmetic is performed on integer or real values, with operands being obtained by conversions
from bitstrings and results converted back to bitstrings afterwards. As these data types are the unbounded
mathematical types, no issues arise about overflow or similar errors.

Unary plus, minus, and absolute value

If x is an integer or real, then +x is x unchanged, –x is x with its sign reversed, and Abs(x) is the absolute value of x.
All three are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x–y are their sum and difference. Both are of type integer if x and y are both
of type integer, and real otherwise.

Addition and subtraction are particularly common arithmetic operations in pseudocode, and so it is also convenient
to have definitions of addition and subtraction acting directly on bitstring operands.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x–y are the least significant
N bits of the results of converting them to integers and adding or subtracting them. Signed and unsigned conversions
produce the same result:

x+y = (SInt(x) + SInt(y))<N–1:0>
= (UInt(x) + UInt(y))<N–1:0>

x–y = (SInt(x) – SInt(y))<N–1:0>
= (UInt(x) – UInt(y))<N–1:0>

If x is a bitstring of length N and y is an integer, x+y and x–y are the bitstrings of length N defined by x+y = x + y<N–1:0>
and x–y = x – y<N–1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x–y are the bitstrings of
length M defined by x+y = x<M–1:0> + y and x–y = x<M–1:0> – y.

Comparisons

If x and y are integers or reals, then x == y, x != y, x < y, x <= y, x > y, and x >= y are equal, not equal, less than,
less than or equal, greater than, and greater than or equal comparisons between them, producing Boolean results. In
the case of == and !=, this extends the generic definition applying to any two values of the same type to also act
between integers and reals.
C-238 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C Pseudocode Definition
C.4 Operators and built-in functions
Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type
integer, and real otherwise.

Division and modulo

If x and y are integers or reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x – y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Square root

If x is an integer or a real, Sqrt(x) is its square root, and is always of type real.

Rounding and aligning

If x is a real:
• RoundDown(x) produces the largest integer n such that n <= x.
• RoundUp(x) produces the smallest integer n such that n >= x.
• RoundTowardsZero(x) produces RoundDown(x) if x > 0.0, 0 if x == 0.0, and RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y) is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)–1:0> is a bitstring of
the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y)
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its
argument with its n low-order bits forced to zero.

Scaling

If n is an integer, 2^n is the result of raising 2 to the power n and is of type real.

If x and n are of type integer, then:
• x << n = RoundDown(x * 2^n).
• x >> n = RoundDown(x * 2^(–n)).

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. Both
are of type integer if x and y are both of type integer, and real otherwise.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-239
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.5 Statements and program structure
C.5 Statements and program structure
The following sections describe the control statements used in the pseudocode:
• Simple statements.
• Compound statements on page C-241.
• Comments on page C-244.

C.5.1 Simple statements

Each of the following simple statements must be terminated with a semicolon, as shown.

Assignments

An assignment statement takes the form:

<assignable_expression> = <expression>;

Procedure calls

A procedure call takes the form:

<procedure_name>(<arguments>);

Return statements

A procedure return takes the form:

return;

and a function return takes the form:

return <expression>;

where <expression> is of the type declared in the function prototype line.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that the Undefined
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;
C-240 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C Pseudocode Definition
C.5 Statements and program structure
This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {<text>};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION
DEFINED. An optional <text> field can give more information.

SUBARCHITECTURE_DEFINED

This subsection describes the statement:

SUBARCHITECTURE_DEFINED <text>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is SUBARCHITECTURE
DEFINED. An optional <text> field can give more information.

C.5.2 Compound statements

Indentation normally indicates the structure in compound statements. The statements contained in structures such
as if … then … else … or procedure and function definitions are indented more deeply than the statement itself, and
their end is indicated by returning to the original indentation level or less.

Indentation is normally done by four spaces for each level.

if … then … else …

A multi-line if … then … else … structure takes the form:

if <boolean_expression> then
<statement 1>
<statement 2>
…
<statement n>

elsif <boolean_expression> then
<statement a>
<statement b>
…
<statement z>

else
<statement A>
<statement B>
…
<statement Z>

The block of lines consisting of elsif and its indented statements is optional, and multiple such blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when there are only simple statements in the then part and in the else part,
if it is present, such as:

if <boolean_expression> then <statement 1>
if <boolean_expression> then <statement 1> else <statement A>
if <boolean_expression> then <statement 1> <statement 2> else <statement A>
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-241
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.5 Statements and program structure
Note
 In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and the
fact that the else part is optional are differences from the if … then … else … expression.
C-242 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Appendix C Pseudocode Definition
C.5 Statements and program structure
repeat … until …

A repeat … until … structure takes the form:

repeat
<statement 1>
<statement 2>
…
<statement n>

until <boolean_expression>;

while … do

A while … do structure takes the form:

while <boolean_expression> do
<statement 1>
<statement 2>
…
<statement n>

for …

A for … structure takes the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>
<statement 2>
…
<statement n>

case … of …

A case … of … structure takes the form:

case <expression> of
when <constant values>

<statement 1>
<statement 2>
…
<statement n>
… more "when" groups …

otherwise
<statement A>
<statement B>
…
<statement Z>

In this structure, <constant values> consists of one or more constant values of the same type as <expression>,
separated by commas. Abbreviated one line forms of when and otherwise parts can be used when they contain only
simple statements.

If <expression> has a bitstring type, <constant values> can also include bitstring constants containing 'x' bits. For
details see Equality and non-equality testing on page C-235.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. C-243
ID080813 Non-Confidential

Appendix C Pseudocode Definition
C.5 Statements and program structure
Procedure and function definitions

A procedure definition takes the form:

<procedure name>(<argument prototypes>)
<statement 1>
<statement 2>
…
<statement n>

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument
definition consists of a type name followed by the name of the argument.

Note
 This first prototype line is not terminated by a semicolon. This helps to distinguish it from a procedure call.

A function definition is similar but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>
<statement 2>
…
<statement n>

An array-like function is similar but with square brackets:

<return type> <function name>[<argument prototypes>]
<statement 1>
<statement 2>
…
<statement n>

An array-like function also usually has an assignment prototype:

<function name>[<argument prototypes>] = <value prototypes>
<statement 1>
<statement 2>
…
<statement n>

C.5.3 Comments

Two styles of pseudocode comment exist:
• // starts a comment that is terminated by the end of the line.
• /* starts a comment that is terminated by */.
C-244 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates that the value associated with a memory access is invalid.

ADI See ARM Debug Interface (ADI).

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate address/control and data phases, unaligned data transfers using byte strobes,
burst-based transactions with only start address issued, separate read and write data channels to enable low-cost
DMA, ability to issue multiple outstanding addresses, out-of-order transaction completion, and easy addition of
register stages to provide timing closure.The AXI protocol also includes optional extensions to cover signaling for
low-power operation.

AXI is targeted at high performance, high clock frequency system designs and includes a number of features that
make it very suitable for high speed sub-micron interconnect.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only supports a subset of the
functionality provided by the AMBA AXI protocol. The full AMBA AHB protocol specification includes a number
of features that are not commonly required for master and slave IP developments and ARM recommends only a
subset of the protocol is usually used. This subset is defined as the AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture (AMBA).

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA is the ARM open standard
for on-chip buses. It is an on-chip bus specification that details a strategy for the interconnection and management
of functional blocks that make up a System-on-Chip (SoC). It aids in the development of embedded processors with
one or more CPUs or signal processors and multiple peripherals. AMBA complements a reusable design
methodology by defining a common backbone for SoC modules.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. Glossary-245
ID080813 Non-Confidential

 Glossary

Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or general-purpose peripherals such
as timers, interrupt controllers, UARTs, and I/O ports. Connection to the main system bus is through a
system-to-peripheral bus bridge that helps to reduce system power consumption.

AHB See Advanced High-performance Bus (AHB).

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is said to be aligned.
Aligned words and halfwords have addresses that are divisible by four and two respectively. The terms word-aligned
and halfword-aligned therefore stipulate addresses that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture (AMBA).

APB See Advanced Peripheral Bus (APB).

Architecture The organization of either or both of hardware and software that characterizes a processor and its attached
components, and enables devices with similar characteristics to be grouped together when describing their behavior,
for example, Harvard architecture, instruction set architecture, ARMv6 architecture.

ARM Debug Interface (ADI)
Version 5 of the ARM Debug Interface is defined by this specification. See About the ARM Debug Interface version
5 (ADIv5) on page 1-18 for a summary of earlier versions of the ARM Debug Interface.

AXI See Advanced eXtensible Interface (AXI).

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are stored at increasing addresses in
memory.

See also Little-endian and Endianness.

Big-endian memory
Memory in which:

• A byte or halfword at a word-aligned address is the most significant byte or halfword within the word at that
address.

• A byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also Little-endian memory.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement boundary scan technology using a
standard JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form
the chain connected between TDI and TDO, through which test data is shifted. Processors can contain several shift
registers to enable you to access selected parts of the device.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, there is no requirement to
supply an address for any of the transfers after the first one. This increases the speed at which the group of transfers
can occur. Bursts over AMBA are controlled using signals to indicate the length of the burst and how the addresses
are incremented.

Byte An 8-bit data item.

DAP See Debug Access Port (DAP).

Data Link The layer of an ADIv5 implementation that provides the functional and procedural means to transfer data between
the external debugger and the Debug Port (DP). ADIv5 defines two Data Link layers, one based on the IEEE 1149.1
Standard Test Access Port and Boundary Scan Architecture, referred to as JTAG, and one based on the ARM Serial
Wire Debug protocol interface, referred to as SW-DP.

DATA LINK DEFINED
Means that the behavior is not defined by the base architecture, but must be defined and documented by individual
Data Link layers of the architecture.

When DATA LINK DEFINED appears in body text, it is always in SMALL CAPITALS.

DBGTAP See Debug Test Access Port (DBGTAP).
Glossary-246 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

 Glossary

Debug Access Port (DAP)
A TAP block that acts as an AMBA, AHB or AHB-Lite, master for access to a system bus. The DAP is the term
that encompasses a set of modular blocks that support system wide debug. The DAP is a modular component,
intended to be extendable to support optional access to multiple systems such as memory mapped AHB and
CoreSight APB through a single debug interface.

Debugger A system that finds faults in the execution of software.

Debug Test Access Port (DBGTAP)
The collection of four mandatory and one optional terminals that form the input/output and control interface to a
JTAG boundary scan architecture. The mandatory terminals are DBGTDI, DBGTDO, DBGTMS, and TCK. The
optional terminal is DBGTRSTn. This signal is mandatory in ARM cores because it is resets the debug logic.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any accesses to the data
concerned.

DMA See Direct Memory Access (DMA).

Doubleword A 64-bit data item.

Embedded Trace Macrocell (ETM)
A hardware component that, when connected to a processor core, generates instruction and data trace information.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are stored in memory. An
aspect of the system’s memory mapping.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell (ETM).

Halfword A 16-bit data item.

Host A computer that provides data and other services to another computer. Especially, a computer providing debugging
services to a target being debugged.

IMPLEMENTATION DEFINED
The behavior is not architecturally defined, but is defined and documented by individual implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in SMALL CAPITALS.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard defines a boundary scan
architecture used for in-circuit testing of integrated circuit devices. It is commonly known by the initials JTAG.

JTAG See JTAG.

JTAG Access Port (JTAG-AP)
An optional component of the DAP that provides JTAG access to on-chip components, operating as a JTAG master
port to drive JTAG chains throughout a SoC.

JTAG-AP See JTAG Access Port (JTAG-AP).

JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for debug access.

JTAG-DP See JTAG Debug Port (JTAG-DP).

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing addresses in
memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• A byte or halfword at a word-aligned address is the least significant byte or halfword within the word at that
address.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. Glossary-247
ID080813 Non-Confidential

 Glossary

• A byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also Big-endian memory.

Powerup reset A reset asserted when the device is first powered up.

RAO See Read-As-One (RAO).

RAO/WI Read-as-One, Writes Ignored. Hardware must implement the field as Read-as-One, and must ignore writes to the
field. Software can rely on the field reading as all 1s, and all writes being ignored. This applies to a single bit that
reads as 1, or to a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-as-Zero, Writes ignored. Hardware must implement the field as Read-as-Zero, and must ignore writes to the
field. Software can rely on the field reading as all 0s, and all writes being ignored. This applies to a single bit that
reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-As-One (RAO)
Read-as-One. Hardware must implement the field as Read-as-One. Software can rely on the field reading as all 1s.
This applies to a single bit that reads as 1, or to a field that reads as all 1s.

Read-As-Zero (RAZ)
Read-as-Zero. Hardware must implement the field as Read-as-Zero. Software can rely on the field reading as all 0s.
This applies to a single bit that reads as 0, or to a field that reads as all 0s.

RES0 In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to the bit or field must be ignored.
Software must not rely on the bit reading as 0, or all 0s for a bit field, and except for writing back to a register must
treat the value as if it is UNKNOWN. When writing to the register, software must write the bit as 0, or the bit field as
all 0s, if it is writing the field without having previously read the register, or when the register has not been
initialized.

If the software that is writing to the register has read the register since the register was last reset, it must preserve
the value of the field by writing the value that it previously read from the field. Hardware must ignore writes to these
fields. If a value is written to the field that is neither 0 (or all 0s for a bit field), nor a value previously read for the
same field in the same register, software must expect an UNPREDICTABLE result.

A RES0 field that is read-only must read-as-zero, but software must not rely on the field reading as zero, and must
treat the value as UNKNOWN. A res0 field that is write-only must be written as zero. The effect of writing an other
value to the field is UNPREDICTABLE.

In some ARM Architecture Reference Manuals, the definition of RES0 is extended to cover cases where a bit or field
is RES0 in some states, but behaves differently in other states.

When RES0 appears in body text, it is always in SMALL CAPITALS.

RES1 In any implementation, the bit must read as 1, or all 1s for a bit field, and writes to the bit or field must be ignored.
Software must not rely on the bit reading as 1, or all 1s for a bit field, and except for writing back to a register must
treat the value as if it is UNKNOWN. When writing to the register, software must write the bit as 1, or the bit field as
all 1s, if it is writing the field without having previously read the register, or when the register has not been
initialized.

If the software that is writing to the register has read the register since the register was last reset, it must preserve
the value of the field by writing the value that it previously read from the field. Hardware must ignore writes to these
fields. If a value is written to the field that is neither 1 (or all 1s for a bit field), nor a value previously read for the
same field in the same register, software must expect an UNPREDICTABLE result.

Each bit of a RES1 field that is read-only must read-as-one, but software must not rely on the bits reading as one,
and must treat their values as UNKNOWN. Each bit of a RES1 field that is write-only must be written as one. The effect
of writing an other value to the field is UNPREDICTABLE.
Glossary-248 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

 Glossary

In some ARM Architecture Reference Manuals, the definition of RES1 is extended to cover cases where a bit or field
is RES1 in some states, but behaves differently in other states.

When RES1 appears in body text, it is always in SMALL CAPITALS.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the implementation, or
produces Unpredictable results if the contents of the field are not zero. These fields are reserved for use in future
extensions of the architecture or are implementation specific. All reserved bits not used by the implementation must
be written as 0 and read as 0.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan technology using a standard
JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form the chain
connected between TDI and TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

Serial-Wire Debug Port (SW-DP)
An optional external interface for the DAP that provides a low pin count bidirectional serial debug interface.

SW-DP See Serial-Wire Debug Port (SW-DP).

TAP See Test Access Port (TAP).

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output and control interface to a
JTAG boundary scan architecture. The mandatory terminals are TDI, TDO, TMS, and TCK. The optional terminal
is TRST*.

Trace port A port on a device, such as a processor or SoC, to output trace information.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data size is said to be
unaligned. For example, a word stored at an address that is not divisible by four.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not:
• Be a security hazard.
• Be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNP See UNPREDICTABLE.

UNPREDICTABLE
For reads, the data returned when reading from this location is unpredictable. It can have any value. For writes,
writing to this location causes unpredictable behavior, or an unpredictable change in device configuration.
UNPREDICTABLE behavior must not present security holes, and must not halt or hang the processor, or any part of
the system.

In issue A of this document, UNPREDICTABLE also meant an UNKNOWN value.

When UNPREDICTABLE appears in body text, it is always in SMALL CAPITALS.

WI Writes ignored.

W1C Writing a 1 to the bit clears the bit to 0. Writing a 0 to the bit has no effect.

Word A 32-bit data item.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. Glossary-249
ID080813 Non-Confidential

 Glossary

Glossary-250 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813

	ARM Debug Interface Architecture Specification ADIv5.0 to ADIv5.2
	Contents
	Preface
	About this book
	Intended audience

	Using this book
	Conventions
	Typographic conventions
	Signals
	Timing diagrams
	Numbers
	Pseudocode descriptions

	Additional reading
	ARM publications
	Other publications

	Feedback
	Feedback on this book

	1: Introduction
	1.1 About the ARM Debug Interface version 5 (ADIv5)
	1.1.1 About the versions of ADIv5

	1.2 The function of the ARM Debug Interface
	1.2.1 Embedded core debug functionality
	1.2.2 System debug functionality
	1.2.3 Compatibility between CoreSight and ARM Debug interfaces

	1.3 The subdivisions of an ARM Debug Interface v5 implementation
	1.4 The external interface, the Debug Port (DP)
	1.4.1 The JTAG Debug Port (JTAG-DP)
	1.4.2 The Serial Wire Debug Port (SW-DP)
	1.4.3 The Serial Wire/JTAG Debug Port (SWJ-DP)

	1.5 The resource interface, the Access Ports (APs)
	1.5.1 Using the Debug Port to access Access Ports
	1.5.2 Guide to the detailed description of a MEM-AP
	1.5.3 Guide to the detailed description of a JTAG-AP
	1.5.4 Using the Access Port to access debug resources

	1.6 Design choices and implementation examples
	1.6.1 Choices for the Debug Port (DP)
	1.6.2 Choices for the Access Ports (APs)

	2: The Debug Port (DP)
	2.1 Common Debug Port features
	2.1.1 Sticky flags and DP error responses
	2.1.2 MINDP, Minimal Debug Port extension
	2.1.3 Pushed-compare and pushed-verify operations
	2.1.4 The transaction counter
	2.1.5 Power and reset control

	2.2 DP architecture versions
	2.2.1 DP architecture versions summary
	2.2.2 Debug Port (DP) registers summary
	2.2.3 DP architecture version 0 (DPv0) address map
	2.2.4 DP architecture version 1 (DPv1) address map
	2.2.5 DP architecture version 2 (DPv2) address map
	2.2.6 Register maps, and accesses to reserved addresses

	2.3 DP register descriptions
	2.3.1 ABORT, AP Abort register
	2.3.2 CTRL/STAT, Control/Status register
	2.3.3 DLCR, Data Link Control Register
	2.3.4 DLPIDR, Data Link Protocol Identification Register
	2.3.5 DPIDR, Debug Port Identification Register
	2.3.6 EVENTSTAT, Event Status register
	2.3.7 RDBUFF, Read Buffer register
	2.3.8 RESEND, Read Resend register
	2.3.9 SELECT, AP Select register
	2.3.10 TARGETID, Target Identification register
	2.3.11 TARGETSEL, Target Selection register

	2.4 System and debug power and debug reset control
	2.4.1 The DAP power domains model
	2.4.2 Power control requirements and operation
	2.4.3 Emulation of powerdown
	2.4.4 Emulation of power control
	2.4.5 Debug reset control
	2.4.6 System reset control

	3: The JTAG Debug Port (JTAG-DP)
	3.1 The Debug TAP State Machine introduction
	3.2 The scan chain interface
	3.2.1 Physical connection to the JTAG-DP
	3.2.2 The Debug TAP State Machine (DBGTAPSM)
	3.2.3 Basic operation of the DBGTAPSM

	3.3 IR scan chain and IR instructions
	3.3.1 The JTAG-DP Instruction Register (IR)
	3.3.2 Required Instruction Register (IR) instructions
	3.3.3 IMPLEMENTATION DEFINED extensions to the IR instruction set

	3.4 DR scan chain and DR registers
	3.4.1 BYPASS, the JTAG-DP Bypass register
	3.4.2 IDCODE, the JTAG TAP ID register
	3.4.3 DPACC and APACC, the JTAG-DP DP Access register and AP Access register
	3.4.4 ABORT, the JTAG-DP Abort register

	4: The Serial Wire Debug Port (SW-DP)
	4.1 Introduction to the Serial Wire Debug Port
	4.2 Introduction to the ARM Serial Wire Debug (SWD) protocol
	4.2.1 SWD protocol versions
	4.2.2 Line turn-round
	4.2.3 Idle cycles
	4.2.4 Bit order
	4.2.5 Parity
	4.2.6 Limitations of multi-drop

	4.3 Serial Wire Debug protocol operation
	4.3.1 Key to illustrations of operations
	4.3.2 Successful write operation (OK response)
	4.3.3 Successful read operation (OK response)
	4.3.4 WAIT response to read or write operation request
	4.3.5 FAULT response to read or write operation request
	4.3.6 Protocol error response
	4.3.7 Sticky overrun behavior
	4.3.8 SW-DP write buffering
	4.3.9 Summary of target responses
	4.3.10 Summary of host responses

	4.4 Serial Wire Debug interface
	4.4.1 Line interface
	4.4.2 Line pull-up
	4.4.3 Connection and line reset sequence
	4.4.4 Target selection protocol, SWD protocol version 2

	5: The Serial Wire/JTAG Debug Port (SWJ-DP)
	5.1 Serial Wire/JTAG Debug Port (SWJ-DP)
	5.1.1 SWJ-DP structure
	5.1.2 SWJ-DP operation
	5.1.3 SWD and JTAG interface

	5.2 SWD and JTAG select mechanism
	5.2.1 Switching from JTAG to SWD operation
	5.2.2 Switching from SWD to JTAG operation

	5.3 Dormant operation
	5.3.1 Use of Dormant state other than in SWJ-DP
	5.3.2 JTAG to Dormant Switching
	5.3.3 SWD to Dormant switching
	5.3.4 Switching out of Dormant state

	5.4 Restriction on switching

	6: The Access Port (AP)
	6.1 Overview of Access Ports (APs)
	6.2 Selecting and accessing an AP
	6.2.1 Stalling accesses

	6.3 The Programmers’ Model for Access Port (AP) registers
	6.3.1 IDR, Identification Register
	6.3.2 Reserved addresses

	7: The Memory Access Port (MEM-AP)
	7.1 About the function of a Memory Access Port (MEM-AP)
	7.1.1 The programmers’ model for debug register access
	7.1.2 Selecting and accessing the MEM-AP
	7.1.3 The MEM-AP registers
	7.1.4 MEM-AP register accesses and memory accesses

	7.2 MEM-AP functions
	7.2.1 Enabling access to the connected debug device or memory system
	7.2.2 Auto-incrementing the Transfer Address Register (TAR)
	7.2.3 Stalling accesses
	7.2.4 Response to debug component errors
	7.2.5 Variable access size for memory accesses
	7.2.6 Byte lanes
	7.2.7 Packed transfers
	7.2.8 Slave memory port and software access control

	7.3 Implementing a MEM-AP
	7.3.1 IMPLEMENTATION DEFINED features of an MEM-AP implementation
	7.3.2 MEM-AP implementation requirements
	7.3.3 MEM-AP Extensions

	7.4 MEM-AP examples of pushed-verify and pushed-compare
	7.4.1 Example use of pushed-verify operation on a MEM-AP
	7.4.2 Example use of pushed-find operation on a MEM-AP
	7.4.3 Example using the transaction counter for a pushed-find operation on a MEM-AP

	7.5 MEM-AP register summary
	7.6 MEM-AP register descriptions
	7.6.1 BASE, Debug Base Address register
	7.6.2 BD0-BD3, Banked Data registers 0-3
	7.6.3 CFG, Configuration register
	7.6.4 CSW, Control/Status Word register
	7.6.5 DRW, Data Read/Write register
	7.6.6 MBT, Memory Barrier Transfer register
	7.6.7 TAR, Transfer Address Register

	8: The JTAG Access Port (JTAG-AP)
	8.1 Overview of the JTAG Access Port (JTAG-AP)
	8.1.1 Selecting and accessing the JTAG-AP
	8.1.2 Logical structure of the JTAG-AP
	8.1.3 JTAG port signals

	8.2 Operation of the JTAG-AP
	8.2.1 JTAG-AP register accesses and accesses to the JTAG scan chain
	8.2.2 Resetting connected JTAG devices or subsystems
	8.2.3 Pushed transaction and transaction counter support

	8.3 The JTAG Engine Byte Command Protocol
	8.3.1 The encoding of the TMS packet
	8.3.2 The encoding of the TDI_TDO packet
	8.3.3 Response bytes from a TDI_TDO packet

	8.4 JTAG-AP register summary
	8.5 JTAG-AP register descriptions
	8.5.1 The Byte FIFO registers, BRFIFO1 to BRFIFO4 and BWFIFO1 to BWFIFO4
	8.5.2 CSW, Control/Status Word Register
	8.5.3 PSEL, Port Select register
	8.5.4 PSTA, Port Status Register

	9: Component and Peripheral ID Registers
	9.1 Component and Peripheral ID registers
	9.1.1 Summary of Component and Peripheral ID Registers

	9.2 The Component ID Registers
	9.2.1 CIDR0, Component ID Register 0
	9.2.2 CIDR1, Component ID Register 1
	9.2.3 CIDR2, Component ID Register 2
	9.2.4 CIDR3, Component ID Register 3

	9.3 The Peripheral ID Registers
	9.3.1 PIDR0, Peripheral ID Register 0
	9.3.2 PIDR1, Peripheral ID Register 1
	9.3.3 PIDR2, Peripheral ID Register 2
	9.3.4 PIDR3, Peripheral ID Register 3
	9.3.5 PIDR4, Peripheral ID Register 4
	9.3.6 PIDR5-PIDR7, Peripheral ID Registers 5-7
	9.3.7 Legacy Peripheral ID layout

	10: ROM Tables
	10.1 ROM Table overview
	10.2 ROM Table entries
	10.2.1 Component descriptions and the component base address
	10.2.2 Empty entries and the end of the ROM Table

	10.3 The MEMTYPE register
	10.4 Component and Peripheral ID Registers
	10.4.1 Identifying the debug SoC or platform

	10.5 ROM Table hierarchies
	10.5.1 Peripheral ID Registers in lower-level ROM Tables
	10.5.2 Prohibited ROM Table references

	A: Standard Memory Access Port Definitions
	A.1 Introduction
	A.2 AMBA AXI3 and AXI4
	A.3 AMBA AXI4 with ACE-Lite
	A.3.1 CSW register implementation
	A.3.2 MBT register implementation

	A.4 AMBA AHB
	A.5 AMBA APB2 and APB3

	B: Cross-over with the ARM Architecture
	B.1 Introduction
	B.2 ARMv6-M architecture
	B.3 ARMv7-M architecture profile
	B.4 ARMv7-A without Large Physical Address Extension and ARMv7-R architecture profiles
	B.5 ARMv7-A with Large Physical Address Extension and ARMv8-A architecture profiles
	B.6 Summary of the required ADIv5 implementations

	C: Pseudocode Definition
	C.1 About ARM pseudocode
	C.1.1 General limitations of ARM pseudocode

	C.2 Data types
	C.2.1 General data type rules
	C.2.2 Bitstrings
	C.2.3 Integers
	C.2.4 Reals
	C.2.5 Booleans
	C.2.6 Enumerations
	C.2.7 Lists
	C.2.8 Arrays

	C.3 Expressions
	C.3.1 General expression syntax
	C.3.2 Operators and functions - polymorphism and prototypes
	C.3.3 Precedence rules

	C.4 Operators and built-in functions
	C.4.1 Operations on generic types
	C.4.2 Operations on Booleans
	C.4.3 Bitstring manipulation
	C.4.4 Arithmetic

	C.5 Statements and program structure
	C.5.1 Simple statements
	C.5.2 Compound statements
	C.5.3 Comments

	Glossary

