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Preface

This preface introduces the ARM Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2. It contains the 
following sections:
• About this book on page x.
• Using this book on page xi.
• Conventions on page xii.
• Additional reading on page xiv.
• Feedback on page xv.
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 About this book
About this book
This is the Architecture Specification for the ARM Debug Interface v5, ADIv5.0 to ADIv5.2 (ADIv5).

Intended audience

This specification is written for system designers and engineers who are specifying, designing or implementing a 
debug interface to the ADIv5 architecture specification. This includes system designers and engineers who are 
specifying, designing or implementing a System-on-Chip (SoC) that incorporates a debug interface that complies 
with the ADIv5 specification.

This specification is also intended for engineers who are working with a debug interface that conforms to the ADIv5 
specification. This includes designers and engineers who are:
• Specifying, designing or implementing hardware debuggers.
• Specifying, designing or writing debug software.

These engineers have no control over the design decisions made in the ADIv5 interface implementation to which 
they are connecting, but must be able to identify the ADIv5 interface components present, and understand how they 
operate.

This specification provides an architectural description of an ADIv5 interface. It does not describe how to 
implement the interface.
x Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
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Using this book
This specification is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for a high-level view of the ARM Debug Interface (ADI). This chapter defines the 
logical subdivisions of an ADI, and summarizes the design choices made when implementing an 
ADI.

Chapter 2 The Debug Port (DP) 

Read this chapter for a description of the features that must be implemented on the Debug Port (DP) 
of an ADI.

Every ADI includes a single DP, either a JTAG Debug Port (JTAG-DP) or a Serial Wire Debug Port 
(SW-DP).

Chapter 3 The JTAG Debug Port (JTAG-DP) 

Read this chapter for a description of the JTAG Debug Port (JTAG-DP), and in particular, the Debug 
Test Access Port State Machine (DBGTAPSM) and the scan chains that access the JTAG-DP.

Chapter 4 The Serial Wire Debug Port (SW-DP) 

Read this chapter for a description of the Serial Wire Debug Port (SW-DP), and the Serial Wire 
Debug protocol used for accesses to a SW-DP.

Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP) 

Read this chapter for a description of multiple protocol interoperability as implemented in the Serial 
Wire/JTAG Debug Port (SWJ-DP) CoreSight component.

Chapter 6 The Access Port (AP) 

Read this chapter for a description of ADI Access Ports (APs), and details of the features that every 
AP must implement.

Chapter 7 The Memory Access Port (MEM-AP) 

Read this chapter for a description of the ADI Memory Access Port (MEM-AP).

Chapter 8 The JTAG Access Port (JTAG-AP) 

Read this chapter for a description of the ADI JTAG Access Port (JTAG-AP).

Chapter 9 Component and Peripheral ID Registers 

Read this chapter for a description of the Component and Peripheral ID Registers. These registers 
are part of the register space of every debug component that complies with the ADIv5 specification.

Chapter 10 ROM Tables 

Read this chapter for a description of ARM debug component ROM Tables. Any ADI can include 
a ROM Table, and an ADI with more than one debug component must include at least one ROM 
Table.

Appendix A Standard Memory Access Port Definitions 

Read this appendix for information on implementing the Memory Access Port (MEM-AP).

Appendix B Cross-over with the ARM Architecture 

Read this appendix for a description of the required or recommended options for the ARM Debug 
Interface for ARMv6-M and all ARMv7 architecture profiles.

Appendix C Pseudocode Definition 

Read this appendix for a description of the pseudocode used in this document.

Glossary Read the Glossary for definitions of some of the terms used in this manual.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. xi
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Conventions
The following sections describe conventions that this specification can use:
• Typographic conventions.
• Signals.
• Timing diagrams.
• Numbers on page xiii.
• Pseudocode descriptions on page xiii.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold  Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in 
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS 

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:

• A URL, for example, http://infocenter.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on 
the current page, for example, Pseudocode descriptions on page xiii.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that 
defines the colored term, for example AMBA.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or 
active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix DBG Denotes debug signals.

Timing diagrams

The figure named Key to timing diagram conventions on page xiii explains the components used in timing diagrams. 
Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in 
the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that 
time. The actual level is unimportant and does not affect normal operation.
xii Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
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 Conventions
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to 
the bus change shown in Key to timing diagram conventions. If a timing diagram shows a single-bit signal in this 
way then its value does not affect the accompanying description.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In 
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This 
pseudocode is written in a monospace font, and is described in Appendix C Pseudocode Definition.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. xiii
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Additional reading
This section lists relevant publications from ARM and third parties.

See the Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

See the following documents for other information that is relevant to this ADIv5 specification:

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).

• Embedded Trace Macrocell Architecture Specification (ARM IHI 0014).

• CoreSight Architecture Specification (ARM IHI 0029).

• CoreSight SoC Technical Reference Manual (ARM DDI 0480).

• AMBA® Specification (Rev 2.0) (ARM IHI 0011).

• AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and ACE-Lite™ 
(ARM IHI 0022).

• AMBA® 3 AHB-Lite™ Protocol Specification (ARM IHI 0033).

• AMBA® 4 APB™ Protocol Specification (ARM IHI 0024).

• ARM1136JF-S™ and ARM1136J-S™ Technical Reference Manual (ARM DDI 0211).

Other publications

The following books are referred to in this specification, or provide more information:
• IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE 1149.1-2001).
• JEDEC Standard Manufacture’s Identification Code (JEDEC JEP106).
xiv Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
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Feedback
ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this specification, send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM IHI 0031C.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of 
any document when viewed with any other PDF reader.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. xv
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Chapter 1 
Introduction

This chapter introduces the ARM Debug Interface architecture and summarizes the design decisions required for an 
ARM Debug Interface implementation. It also describes how the Debug Access Port (DAP) accesses registers 
within the DAP and in the connected system. This description is based on JTAG-DP accesses to a Debug Interface, 
and shows how registers are located at different levels within the Debug Interface model. It contains the following 
sections:
• About the ARM Debug Interface version 5 (ADIv5) on page 1-18.
• The function of the ARM Debug Interface on page 1-20.
• The subdivisions of an ARM Debug Interface v5 implementation on page 1-22.
• The external interface, the Debug Port (DP) on page 1-23.
• The resource interface, the Access Ports (APs) on page 1-24.
• Design choices and implementation examples on page 1-28.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-17
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1.1 About the ARM Debug Interface version 5 (ADIv5)
The terms ARM Debug Interface v5 and ADIv5 refer to the major revision of ADI, that is, to v5.0, and also to v5.1, 
or any other revision of ADIv5.

ADIv5 is the fifth major version of the ARM Debug Interface.

All previous versions of the ADI are based on the IEEE 1149.1 JTAG interface, but are intended only for accessing 
ARM processor cores and Embedded Trace Macrocells (ETMs):

Debug interface versions 1 and 2 

Implemented on the ARM7TDMI® and ARM9® families of processor cores.

Debug interface version 3 

Introduced for the ARM10™ processor family.

ADIv4 The first version of the ADI to be linked with an ARM architecture version, rather than an 
implementation of an ARM processor core. ARM recommends that ADIv4 is used with 
implementations of the ARMv6 architecture.

ADIv5 removes the link between the ADI and ARM processor cores. An implementation of ADIv5 can access any 
debug component that complies with the ADIv5 specification. The details of the resources accessed by ADIv5 are 
defined by the resources, rather than the ADI.

ADIv5 has three major advantages:

• ADIv5 interfaces can access a greater range of devices.

• Implementation of the ADI can be separated from implementation of the resource, enabling greater reuse of 
implementations. However, this separation is not required.

• Use of the ADIv5 abstractions permits reuse of software tools, such as debuggers.

Versions 1 to 4 of the debug interface require the physical connection to the interface to use an IEEE 1149.1 JTAG 
interface. ADIv5 specifies two alternatives for the physical connection:
• An IEEE 1149.1 JTAG interface.
• A low pin count Serial Wire Debug interface.

The main components of ADIv5 are split between two main architectures:
• The Access Port (AP) architecture.
• The Debug Port (DP) architecture.

1.1.1 About the versions of ADIv5

ADI versions 5.1 and 5.2 are backwards-compatible extensions of the original ARM Debug Interface Architecture 
Specification v5. From the introduction of ADIv5.1, the original ADIv5 specification is described as ADIv5.0. 

Note
 ADIv5.1 was originally defined only by a supplement to the original ARM Debug Interface v5 Architecture 
Specification, issue A of this document. Issue B of this document, ARM IHI 0031B, is the first publication of an 
integrated description of ADIv5.0, ADIv5.1, and ADIv5.2. 

Features defined by ADIv5.0

ADIv5.0 defines:

• Two Debug Ports, JTAG-DP and SW-DP.

• Two Access Ports:

— JTAG-AP, for accessing legacy JTAG components.
1-18 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
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1 Introduction 
1.1 About the ARM Debug Interface version 5 (ADIv5)
— MEM-AP, for accessing memory and components with memory-mapped interfaces.

• The identification model for Access Ports.

• A discovery mechanism for components attached to a MEM-AP.

Features added in v5.1

ADIv5.1 formalizes version numbering of Debug Ports, and defines:

• The programmers’ model of the JTAG-DP defined by ADIv5.0 as Debug Port architecture version 0 (DPv0).

• The programmers’ model of the SW-DP defined by ADIv5.0 as Debug Port architecture version 1 (DPv1).

ADIv5.1 also adds:
• Extensions to the AP identification model.
• Standard definitions for MEM-AP implementations for AMBA bus protocols.
• JTAG support in Debug Port architecture version 1.
• The Minimal Debug Port extension.
• Debug Port architecture version 2 (DPv2).
• Multiple protocol interoperability.
• Serial Wire Debug protocol version 2, that provides a multi-drop capability.

The following subsections give more information about ADIv5 features added in ADIv5.1.

Multiple Protocol Interoperability

ADIv5.1 introduces multiple protocol interoperability extensions, that provide:

• Simple switching between Serial Wire Debug and JTAG protocols. For more information see Chapter 5 The 
Serial Wire/JTAG Debug Port (SWJ-DP).

• A dormant state, for interoperability with other protocols. For more information see Dormant operation on 
page 5-113.

Serial Wire Debug protocol extensions

ADIv5.1 introduces Serial Wire Debug protocol version 2 that extends the Serial Wire Debug protocol, adding 
multi-drop capability. See Chapter 4 The Serial Wire Debug Port (SW-DP).

Minimal Debug Port extension

The Minimal Debug Port (MINDP) is a simplified version of the Debug Port intended for low gate-count 
implementations. See MINDP, Minimal Debug Port extension on page 2-36.

Features added in ADIv5.2

ADIv5.2 includes:

• Extensions to the MEM-AP programmers’ model to support:
— Large physical address spaces of up to 64 bits.
— Data sizes greater than 32 bits.
— Barrier operations.

• Extended definitions of MEM-AP to include extensions for:
— AMBA AXI3, AXI4, and AXI4-Lite.
— AMBA ACE.

• Recommended implementations for:
— ARMv7-A processors including the Large Physical Address Extension.
— ARMv8-A processors.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-19
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1.2 The function of the ARM Debug Interface
This chapter describes the context in which an ARM Debug Interface (ADI) might be implemented.

This section gives a summary of the types of debug functionality provided by debug components in an embedded 
System on Chip (SoC). This information is given in the subsections:
• Embedded core debug functionality.
• System debug functionality.

The ADI is designed to provide easy access to SoC debug components.

See Compatibility between CoreSight and ARM Debug interfaces on page 1-21 for information about compatibility 
with the CoreSight™ architecture.

1.2.1 Embedded core debug functionality

To enable applications to be debugged, an embedded microprocessor might provide facilities that can:

• Modify the state of the processor. An external host must be able to modify the contents of the internal 
registers and the memory system.

• Determine the state of the processor. An external host must be able to read the values of the internal registers, 
and read from the memory system.

• Program debug events. An external host must be able to configure the debug logic so that when a special 
event occurs, such as the program flow reaching a certain instruction in the code, the core enters a special 
execution mode in which its state can be examined and modified by an external system. In this chapter, this 
special execution mode is referred to as Debug state.

• Force the processor to enter or exit Debug state from an external system.

• Determine when the core enters or leaves Debug state.

• Trace program flow around programmable events.

Two examples of technologies that provide these facilities are:

• The ARMv7 Debug Architecture, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R 
edition.

• The Embedded Trace Macrocell, see the ETM Architecture Specification.

In addition, the ARM Debug Interface v5 can access legacy components that implement an IEEE 1149.1 JTAG 
interface. This means that the ADIv5 can access processors that implement earlier versions of the ADI.

1.2.2 System debug functionality

Debug extends beyond the boundaries of an embedded microprocessor core. Engineers must be able to debug:
• Components within an embedded SoC.
• The interconnection fabric of the system.

Examples of debug facilities that might be provided at the system level, outside the embedded microprocessor core, 
include:
• Facilities to:

— Examine the state of the system, including state that might not be visible to the embedded 
microprocessor core.

— Trace accesses on the interconnection fabric. These might be accesses by the microprocessor core, or 
accesses by other devices such as Direct Memory Access (DMA) engines.

• Mechanisms for low-intrusion diagnostic messaging between software and a debugger.
• Cross-triggering mechanisms that enable debug components to signal each other.
• A fabric for the efficient streaming and collection of diagnostic information, such as program trace.
1-20 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
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1.2 The function of the ARM Debug Interface
As far as possible, functions operate with minimal change to the behavior of the system being debugged.

Examples of technologies that provide these facilities are:
• The ADIv5 Debug Access Port (DAP).
• The CoreSight debug architecture. For more information see the CoreSight Architecture Specification.
• The CoreSight components. For more information see the CoreSight SoC Technical Reference Manual. 

1.2.3 Compatibility between CoreSight and ARM Debug interfaces

ADIv5 is designed to be compatible with the ARM CoreSight architecture:
• A CoreSight interface implementation is a valid implementation of ADIv5.
• The ADIv5 specification does not require debug components to be CoreSight-compliant.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 1-21
ID080813 Non-Confidential



1 Introduction 
1.3 The subdivisions of an ARM Debug Interface v5 implementation
1.3 The subdivisions of an ARM Debug Interface v5 implementation
Logically, the ARM Debug Interface (ADI) consists of:

• A number of registers that are private to the interface. These are referred to as the Debug Access Port (DAP) 
registers.

• A means to access the DAP registers.

• A means to access the debug registers of the debug components to which the DAP is connected.

This logical organization of the ADI is shown in Figure 1-1.

Figure 1-1 Subdivisions of an ARM Debug Interface v5 implementation

Because the DAP logically consists of two parts, the Debug Port and the Access Ports, it must support two types of 
access:
• Access to the Debug Port (DP) registers. This is provided by Debug Port accesses (DPACC).
• Access to the Access Port (AP) registers. This is provided by Access Port accesses (APACC).

A DAP can include multiple Access Ports.

An AP is responsible for accessing debug component registers, such as processor debug logic, ETM and trace port 
registers. These accesses are made in response to APACC accesses in a manner defined by the AP.

The method of making these accesses depends on the Debug Port that is implemented, as summarized in The 
external interface, the Debug Port (DP) on page 1-23.

More generally, examples of possible targets of AP accesses include:
• The debug registers of the core processor.
• ETM or Trace Port debug registers.
• A ROM table, see Chapter 10 ROM Tables.
• A memory system.
• A legacy JTAG device.

Note
 Although this specification logically divides the ADIv5 into the elements shown in Figure 1-1, this specification 
does not require implementations to be structured in this way. This specification describes the programmers’ model 
for the ADI, and these subdivisions give a convenient representation of the programmers’ model.
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1.4 The external interface, the Debug Port (DP)
An ARM Debug Interface implementation includes a single Debug Port (DP) that provides the external physical 
connection to the interface. The ARM Debug Interface v5 specification supports the following DP implementations:
• The JTAG Debug Port (JTAG-DP), see The JTAG Debug Port (JTAG-DP).
• The Serial Wire Debug Port (SW-DP), see The Serial Wire/JTAG Debug Port (SWJ-DP).
• The Serial Wire/JTAG Debug Port (SWJ-DP), see Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP).

These alternative DP implementations provide different mechanisms for making Access Port and Debug Port 
accesses. However, they have a number of common features. In particular, each implementation provides:
• A means of identifying the DAP, using an identification code scheme.
• A means of making DP and AP accesses.
• A means of aborting a register access that appears to have failed.

1.4.1 The JTAG Debug Port (JTAG-DP)

The JTAG-DP is based on the IEEE 1149.1 Test Access Port (TAP) and Boundary Scan Architecture, widely 
referred to as JTAG. Because the JTAG-DP is intended for accessing debug components, the naming conventions 
of IEEE 1149.1 are changed, as shown in Table 1-1:

The signal naming conventions of IEEE 1149.1 are modified in a similar way, for example the IEEE 1149.1 TDI 
signal is named DBGTDI on a JTAG Debug Port. See Physical connection to the JTAG-DP on page 3-71 for the 
complete list of the JTAG-DP signal names.

For more information see IEEE 1149.1 Test Access Port and Boundary Scan Architecture.

With the JTAG-DP, IEEE 1149.1 scan chains read or write register information. The DBGTAP scan chains are 
described in more detail in Chapter 3 The JTAG Debug Port (JTAG-DP).

1.4.2 The Serial Wire Debug Port (SW-DP)

The SW-DP is a two-pin serial interface that uses a packet-based protocol to read or write registers.

Communications with the SW-DP use a three-phase protocol:
• A host-to-target packet request.
• A target-to-host acknowledge response.
• A data transfer phase, if required. This can be target-to-host or host-to-target, depending on the request made 

in the first phase.

A packet request from a debugger indicates whether the required access is to a DP register (DPACC) or to an AP 
register (APACC), and includes a two-bit register address.

This protocol is described in more detail in Chapter 4 The Serial Wire Debug Port (SW-DP).

1.4.3 The Serial Wire/JTAG Debug Port (SWJ-DP)

The SWJ-DP interface provides a mechanism to select between Serial Wire Debug (SWD) and JTAG Data Link 
protocols. This enables the JTAG-DP and SW-DP to share pins.

Table 1-1 Comparison of IEEE 1149.1 and JTAG-DP naming

IEEE 1149.1 JTAG-DP JTAG-DP name

TAP DBGTAP Debug Test Access Port.

TAPSM DBGTAPSM Debug Test Access Port State Machine.
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1.5 The resource interface, the Access Ports (APs)
An Access Port provides the interface between a DAP and one or more debug components. That is, the Access Port 
of the DAP connects through a resource-specific transport, such as a debug bus, to a resource that is part of the 
system being debugged. This model is used extensively in this specification.

The ADIv5 components defined by this specification include two alternatives for the resource-specific transport that 
connects the DAP to the system being debugged:
• A DAP can connect to a memory-mapped resource, such as a debug peripheral. For such connections, ADIv5 

defines a Memory Access Port (MEM-AP) programmers’ model.
• A DAP can connect to a legacy IEEE 1149.1 JTAG device. For such connections, ADIv5 defines a JTAG 

Access Port (JTAG-AP) and associated programmers’ model.

The complete description of these is summarized in:
• Guide to the detailed description of a MEM-AP on page 1-26.
• Guide to the detailed description of a JTAG-AP on page 1-27.

This specification does not specify exact requirements about the transport between the AP and the resource. In 
particular, it does not require an MEM-AP to use a bus to connect to the system being debugged. For example, 
ADIv5 might be directly integrated into the resource. 

However, referring to Figure 1-1 on page 1-22, logically a MEM-AP always accesses a memory-mapped resource 
in the system being debugged. For this reason, this specification describes MEM-AP accesses to the system being 
debugged as memory accesses.

Note
 ARM might define additional access ports in the future. In addition, an ARM Debug Interface (ADI) might include 
additional access ports, not specified by ARM.

All Access Ports must follow a base standard for identification, and debuggers must be able to recognize and ignore 
Access Ports that they do not support. For more information see Chapter 6 The Access Port (AP).

As described:
• The simplest ADI has only one AP. This can be either a MEM-AP or a JTAG-AP.
• More ADIs can have multiple APs. These might be:

— A mixture of MEM-APs and JTAG-APs.
— All MEM-APs.
— All JTAG-APs.

The Debug Port uses exactly the same process for accessing MEM-APs and JTAG-APs. However, the connection 
to the system being debugged is very different for MEM-APs and JTAG-APs. Using the Access Port to access debug 
resources on page 1-27 describes how to access any AP (MEM-AP or JTAG-AP), and summarizes how this gives 
access to resources in the system being debugged.

1.5.1 Using the Debug Port to access Access Ports

Figure 1-2 on page 1-26 shows the different levels between the physical connection to the debugger and the debug 
resources of the system being debugged. These levels are designed to enable efficient access to the system being 
debugged, and several levels provide registers within the DAP. This section describes how these register accesses 
are implemented.

The DAP supports two types of access, Debug Port (DP) accesses and Access Port (AP) accesses. Because Debug 
Ports usually have serial interfaces, the methods of making these accesses are kept as short as possible. However, 
all accesses are 32-bits.

The description given here is of scan chain access to the registers, from a debugger connected to a JTAG Debug 
Port. However, the process is very similar when the access is from a Serial Wire Debug interface connection to a 
SW-DP. Differences when accessing the registers from a Serial Wire Debug interface connection are described in 
Chapter 4 The Serial Wire Debug Port (SW-DP).
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Every AP or DP access transaction from the debugger includes two address bits, A[3:2]:
• For a DP register access, the address bits A[3:2] and SELECT.DPBANKSEL determine which register is 

accessed. SELECT is a DP register.
• For an AP register access, SELECT.APSEL selects an AP to access, and the address bits A[3:2] are combined 

with SELECT.APBANKSEL to determine which AP register is accessed, as summarized in Figure 1-2 on 
page 1-26. That is, the two address bits A[3:2] are decoded to select one of the four 32-bit words from the 
register bank indicated by SELECT.APBANKSEL in the AP indicated by SELECT.APSEL. 

Bits [1:0] of all AP and DP register addresses are 0b00. 

For example, to access the register at address 0x14 in AP number 0, the debugger must:
• Use a DP register write to set:

— SELECT.APSEL to 0x00.
— SELECT.APBANKSEL to 0x1.

• Use an AP register access with A[3:2] = 0b01. 
The DAP combines A[3:2] with SELECT.APBANKSEL to generate the AP register address, 0x14. The 
debugger can access any of the four registers from 0x10 to 0x1C without changing SELECT.

This access model is shown in Figure 1-2 on page 1-26. This figure shows how the contents of the SELECT register 
are combined with the A[3:2] bits of the APACC scan-chain to form the address of a register in an AP. Other parts 
of the JTAG-DP are also shown. These are explained in greater detail in later sections.

The implementation of this model is shown, also, in:
• Figure 7-1 on page 7-129, for a MEM-AP implementation.
• Figure 8-1 on page 8-162, for a JTAG-AP implementation.

These figures give more details of the connections to the debug or system resources.
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Figure 1-2 Structure of the Debug Access Port, showing DPv0 JTAG-DP accesses to a generic AP

1.5.2 Guide to the detailed description of a MEM-AP

To understand the operation and use of a MEM-AP, you must understand:
• The MEM-AP itself.
• The MEM-AP registers.
• The standard debug components registers that you access through the MEM-AP.

The MEM-AP is described in the following chapters of this specification:
• Chapter 6 The Access Port (AP).
• Chapter 7 The Memory Access Port (MEM-AP).
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The MEM-AP provides access to zero, one, or more debug components. Any debug component that complies with 
the ARM Generic Identification Registers specification implements a set of Component Identification Registers. 
These are described in Chapter 9 Component and Peripheral ID Registers.

If the MEM-AP connects to more than one debug component then it must also include at least one ROM Table. 
ROM tables are accessed through a MEM-AP, and are described in Chapter 10 ROM Tables.

Note
 As shown in Design choices and implementation examples on page 1-28, a system with only one functional debug 
component might also implement a ROM Table.

1.5.3 Guide to the detailed description of a JTAG-AP

To understand the operation and use of a JTAG-AP, you must understand:
• The JTAG-AP itself.
• The JTAG-AP registers.

The JTAG-AP is described in the following chapters of this specification:
• Chapter 6 The Access Port (AP).
• Chapter 8 The JTAG Access Port (JTAG-AP).

Note
 The JTAG-AP provides a standard JTAG connection to one or more legacy components. The connection between 
the JTAG-AP and the components is described by the IEEE 1149.1-1990 IEEE Standard Test Access Port and 
Boundary Scan Architecture. Details of the use of this connection are outside the scope of this specification.

1.5.4 Using the Access Port to access debug resources

Accessing the AP gives access to the system being debugged, shown as access to Debug resources in Figure 1-2 on 
page 1-26. In summary:

• With a MEM-AP, the debug resources are logically memory-mapped, and the connection between the 
MEM-AP and a debug resource is outside the scope of this specification. Chapter 7 The Memory Access Port 
(MEM-AP) describes the method of accessing these resources, in the section MEM-AP register accesses and 
memory accesses on page 7-130.

• With a JTAG-AP, the debug resources are connected through a standard JTAG serial connection, as defined 
in IEEE 1149.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture. More information 
about accessing the resources is given in Chapter 8 The JTAG Access Port (JTAG-AP).
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1.6 Design choices and implementation examples
The subdivisions of an ARM Debug Interface v5 implementation on page 1-22 introduces the logical subdivisions 
of an ARM Debug Interface, shown in Figure 1-1 on page 1-22. This section outlines the design choices that must 
be made before implementing an ARM Debug Interface. The following subsections consider each of the two 
functional blocks of the interface:
• Choices for the Debug Port (DP).
• Choices for the Access Ports (APs).

Note
 This Architecture Specification is written for engineers implementing an ARM Debug Interface, and for those using 
an ARM Debug Interface. If you are reading the Specification to learn more about a particular ARM Debug 
Interface implementation, you must understand the design choices that have been made in that implementation. 
Those choices might be implicit in the connections to the Debug Interface. If you are uncertain about the choices, 
you must obtain details from the implementer of the Debug Interface.

1.6.1 Choices for the Debug Port (DP)

An ADI Debug Access Port has a single Debug Port. The following subsections summarize the implementation 
options for the DP:
• The Serial Wire Debug Port (SW-DP).
• The JTAG Debug Port (JTAG-DP).
• The Serial Wire/JTAG Debug Port (SWJ-DP).

If you are designing or specifying an ARM Debug Interface, you must decide which of these Debug Ports to 
implement.

Note
 • In illustrations of the ARM Debug Interface, the Debug Port can be any of the following three options: Serial 

Wire Debug Port, a JTAG Debug Port, or a Serial Wire/JTAG Debug Port.

• ARM might define other DPs in the future.

1.6.2 Choices for the Access Ports (APs)

An ARM Debug Interface always includes at least one Access Port, and might contain multiple APs. The simplest 
ARM Debug Interface uses a single AP to connect to a single debug component. Typical examples of this are:

• Using an MEM-AP to connect to a single debug component, such as a microprocessor core, as shown in 
Figure 1-3.

• Using a JTAG-AP to connect to a single legacy IEEE 1149.1 device, as shown in Figure 1-4 on page 1-29.

Figure 1-3 Simple ARM Debug Interface MEM-AP Implementation
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Figure 1-4 Simple ARM Debug Interface JTAG-AP Implementation

However, ROM tables on page 7-128 explains that a system with only a single debug component often implements 
a ROM Table. This gives an implementation similar to the example shown in Figure 1-5.

Figure 1-5 Simple example of an ARM Debug Interface implementation, with ROM Table

Because a single ADI can include multiple APs, the design choices relating to APs are at two levels:

• Choices about the number of APs in the ADI, and whether each AP is a MEM-AP or a JTAG-AP. These 
decisions are considered in Top-level AP planning choices.

• The choices that have to be made for each implemented AP. These choices are considered in:
— Choices for each JTAG-AP on page 1-31.
— Choices for each MEM-AP on page 1-30.

Top-level AP planning choices

In a more complex system, there can be multiple Access Ports, and each access port can be connected to multiple 
components, or multiple address spaces. Three ways in which an AP can be implemented are:

• As a Memory Access Port (MEM-AP) with a memory-mapped debug bus connection. The debug bus 
connects directly to one or more debug register files.

• As a Memory Access Port with a memory-mapped system bus connection. The MEM-AP connection to the 
system bus provides access to one or more debug register files.

• As a JTAG Access Port (JTAG-AP). This connects directly to one or more JTAG devices, and enables 
connection to legacy hardware components.

Note
 The connection between legacy hardware components and a JTAG-AP is defined by the JTAG standard. For 

more information, see Chapter 8 The JTAG Access Port (JTAG-AP).
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If you are designing or specifying an ARM Debug Interface, you must decide how many APs are required, and how 
each of them is implemented. This depends largely on the debug components of the system to which your ADI 
connects.

Figure 1-6 shows a more complex ARM Debug Interface, and illustrates the different Access Port options.

Figure 1-6 Complex ARM Debug Interface, showing the Access Port options

Note
 The ARM Debug Interface v5 architecture specification:

• Supports additional Access Ports. Every Access Port must follow the base standard for identification given 
in this specification. Debuggers must be able to ignore Access Ports that they do not recognize.

• Permits multiple register files to be accessed by a single Memory Access Port. This specification includes a 
base standard for register file identification, and debuggers must be able to ignore register files that they do 
not recognize or do not support.

• Permits a Memory Access Port to access a mixture of system memory and debug register files.

In any ARM Debug Interface v5 implementation, such as those illustrated in Figure 1-2 on page 1-26, the Debug 
Port can be any Debug Port defined by ADIv5.

Choices for each MEM-AP

The main decisions to be made for a MEM-AP concern the connection between the MEM-AP and the 
memory-mapped debug components connected to it. These decisions depend largely on the requirements of those 
debug components. They include:
• Whether a bus is required for this connection.
• If a bus connection is implemented, and the width of the bus.
• The memory map of the MEM-AP address space.

If a MEM-AP connects to more than one debug component then the system must include one or more ROM Tables, 
to provide information about the debug system. However, a system designer might chose to include a ROM table in 
a system that has only one other component. See ROM tables on page 7-128 for more information.
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It is IMPLEMENTATION DEFINED whether a MEM-AP includes certain features, for more information see:
• MEM-AP functions on page 7-132.
• MEM-AP implementation requirements on page 7-142.

The implementation of the connection between the MEM-AP and the debug components can determine whether 
some of these features are included. In particular, certain features must be included if the connection is less than 
32-bits wide. The debug components themselves might place limitations on the connection, for example a 
component might require 32-bit accesses.

For more information about implementing a MEM-AP see Chapter 7 The Memory Access Port (MEM-AP).

Choices for each JTAG-AP

A single JTAG-AP can connect to up to eight JTAG scan chains. These scan chains can be split across multiple 
devices or components within the system being debugged.

In addition, a single JTAG scan chain can contain multiple TAPs. However, ARM recommends that each scan chain 
connected to a JTAG-AP contains only one TAP.

Therefore, the design decisions that must be made for each JTAG-AP are:
• The number of JTAG scan chains connected to the JTAG-AP.
• Whether each scan chain contains one or more TAPs.

For more information, see Chapter 8 The JTAG Access Port (JTAG-AP).
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Chapter 2 
The Debug Port (DP)

This chapter describes the features that are implemented by both Serial Wire Debug Ports (SW-DPs) and on JTAG 
Debug Ports (JTAG-DPs), and by the combined Serial Wire/JTAG Debug Port (SWJ-DP). It contains the following 
sections:
• Common Debug Port features on page 2-34.
• DP architecture versions on page 2-40.
• DP register descriptions on page 2-45.
• System and debug power and debug reset control on page 2-62.

Note
 The following chapters give additional information about DPs:
• Chapter 3 The JTAG Debug Port (JTAG-DP).
• Chapter 4 The Serial Wire Debug Port (SW-DP).
• Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP).
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2.1 Common Debug Port features
The following sections describe the features that are common to all Debug Port implementations:
• Sticky flags and DP error responses.
• MINDP, Minimal Debug Port extension on page 2-36.
• Pushed-compare and pushed-verify operations on page 2-36.
• The transaction counter on page 2-38.
• Power and reset control on page 2-38.

2.1.1 Sticky flags and DP error responses

Within the Debug Port, error conditions are recorded using sticky flags in the DP CTRL/STAT register. These error 
conditions are described in the following sections:
• Read and write errors.
• Overrun detection.
• Protocol errors, SW-DP on page 2-36.

In addition, if pushed transactions are supported, another sticky flag, CTRL/STAT.STICKYCMP, reports the result 
of pushed operations, see Pushed-compare and pushed-verify operations on page 2-36. CTRL/STAT.STICKYCMP 
behaves in the same way as the sticky flags described in this section.

Note
 When set to 1, a sticky flag remains set until it is explicitly cleared to 0. Even if the condition that caused the flag 
to be set to 1 no longer applies, the flag remains set until the debugger clears it to 0.

The method for clearing sticky flags is different for the JTAG-DP and the SW-DP. Clearing the sticky error and 
compare flags in the CTRL/STAT register on page 2-50 summarizes how these flags are cleared to 0.

When an error is flagged, the current transaction is completed and any additional APACC (AP Access) transactions 
are discarded until the sticky flag is cleared to 0.

The DP response to an error condition might be:
• To signal an error response immediately. This happens with the SW-DP.
• To immediately discard all transactions as complete. This happens with the JTAG-DP.

This means that after performing a series of APACC transactions, a debugger must check the CTRL/STAT register 
to check if an error occurred. If a sticky flag is set to 1, the debugger clears the flag to 0 and then, if necessary, 
initiates more APACC transactions to determine the cause of the sticky flag condition. Because the flags are sticky, 
the debugger does not have to check the flags after every transaction. The debugger must only check the 
CTRL/STAT register periodically. This reduces the overhead of checking for errors. For details of how to clear 
sticky flags, see Clearing the sticky error and compare flags in the CTRL/STAT register on page 2-50.

Read and write errors

A read or write error might occur within the DAP, or might come from the resource being accessed. In either case, 
when the error is detected the Sticky Error flag, CTRL/STAT.STICKYERR is set to 1.

For example, a read or write error might be generated if the debugger makes an AP transaction request while the 
debug power domain is powered down. See Power and reset control on page 2-38 for information about power 
domains.

Overrun detection

Debug Ports support an overrun detection mode. This mode enables a user to send blocks of commands to an 
emulator on a high latency, high throughput, connection. These commands must be sent with sufficient in-line 
delays to make overrun errors unlikely. However, the DAP can be programmed so that, if an overrun error occurs, 
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the DAP flags the error by setting the Sticky Overrun flag, CTRL/STAT.STICKYORUN to 1. In this overrun 
detection mode the debugger must check for overrun errors after each sequence of APACC transactions, by 
checking this flag. 

Overrun detection mode is enabled by setting the Overrun Detect bit, CTRL/STAT.ORUNDETECT, to 1. 

As the JTAG-DP and SW-DP protocols differ, the exact behavior in overrun detection mode is DATA LINK DEFINED:

JTAG-DP The Sticky Overrun flag, CTRL/STAT.STICKYORUN is set to 1 if the response to any transaction 
is other than OK/FAULT. 

The response is WAIT until the previous Access Port (AP) transaction completes. Following 
responses are OK/FAULT. See Sticky overrun behavior on DPACC and APACC accesses on 
page 3-83.

SW-DP The Sticky Overrun flag, CTRL/STAT.STICKYORUN is set to 1 if the response to any transaction 
is other than OK. 

The first response to a transaction when a previous AP transaction has not completed is WAIT. 
Following responses are FAULT, because the STICKYORUN bit is set to 1. See Sticky overrun 
behavior on page 4-98.

The value of the Sticky Error flag, CTRL/STAT.STICKYERR, is not changed.

The debugger must clear STICKYORUN to 0 to enable transactions to resume.

Note
 The method of clearing the STICKYORUN flag to 0 is different for a JTAG-DP and a SW-DP. See Clearing the 
sticky error and compare flags in the CTRL/STAT register on page 2-50 for more information.

The behavior of the Debug Port when the Sticky Overrun flag is set to 1 is DATA LINK DEFINED.

If a new transaction is attempted, and results in an overrun error, before an earlier transaction has completed, the 
first transaction still completes normally. Other sticky flags might be set to 1 on completion of the first transaction.

If the overrun detection mode is disabled, by clearing the ORUNDETECT flag to 0, while STICKYORUN is set to 
1, the subsequent value of STICKYORUN is UNKNOWN. To leave overrun detection mode, a debugger must:
• Check the value of the CTRL/STAT.STICKYORUN bit.
• Clear the STICKYORUN bit to 0, if it is set to 1.
• Clear the ORUNDETECT bit to 0, to disable overrun detection mode.
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Protocol errors, SW-DP

Note
 Although these errors can only occur with the SW-DP, they are described in this chapter because they are part of the 
sticky flags error-handling mechanism.

On the Serial Wire Debug interface, protocol errors can occur, for example because of wire-level errors. These errors 
might be detected by the SW-DP:

• If the SW-DP detects a protocol error in the packet request, the Debug Port does not respond to the message.

• If the SW-DP detects a parity error in the data phase of a write transaction, it sets the Sticky Write Data Error 
flag, CTRL/STAT.WDATAERR, to 1. This sticky flag is treated in the same way as the other sticky flags 
described in this section.

For more information see Parity on page 4-91 and Protocol error response on page 4-97.

2.1.2 MINDP, Minimal Debug Port extension

The Minimal Debug Port (MINDP) programmers’ model is a is a simplified version of the Debug Port intended for 
low gate-count implementations. Minimal DP implementations must use DPv1 or later.

For MINDP implementations, the following Debug Port features are removed:
• Pushed-verify operation.
• Pushed-find operation.
• The transaction counter.

When MINDP is implemented:

• MIN, bit[16] of the Debug Port ID Register, DPIDR is RAO.

• The following fields of the CTRL/STAT register, are reserved, RES0:
— TRNCNT, bits[21:12].
— MASKLANE, bits[11:8].
— STICKYCMP, bit[4].
— TRNMODE, bits[3:2].

See CTRL/STAT.

• STKCMPCLR, bit[1] of AP ABORT, is reserved, SBZ. Writing 1 to this bit is UNPREDICTABLE.

2.1.3 Pushed-compare and pushed-verify operations

Debug Ports support operations where the value written as an AP transaction is used at the DP level to compare 
against a target read:

• The debugger writes a value as an AP transaction.

• The DP performs a read from the AP.

• The DP compares the two values and updates the Sticky Compare flag, CTRL/STAT.STICKYCMP based on 
the result of the comparison:
— Pushed-compare sets STICKYCMP to 1 if the values match.
— Pushed-verify sets STICKYCMP to 1 if the values do not match.

Whenever the STICKYCMP bit is set to 1 in this way, any outstanding transaction repeats are canceled.

These operations are described as pushed operations. For more information see CTRL/STAT.

Each AP defines which registers support pushed transactions. If an AP register does not support pushed transactions, 
or SELECT.APSEL selects an AP that is not present, then a pushed transaction sets STICKYCMP to an UNKNOWN 
value. Reserved AP registers and the common AP IDR do not support pushed transactions.
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Pushed operations are enabled using the Transfer Mode bits, CTRL/STAT.TRNMODE.

The DP includes a byte lane mask, so that the compare or verify operation can be restricted to particular bytes in the 
word. This mask is set using the CTRL/STAT.MASKLANE register. For more information about this masking, see 
MASKLANE and the bit masking of the pushed-compare and pushed-verify operations on page 2-49.

Figure 2-1 gives an overview of the pushed operations.

Figure 2-1 Pushed operations overview

Pushed operations improve performance where writes might be faster than reads. They are used as part of in-line 
tests, for example Flash ROM programming and monitor communication.

Considering pushed operations on a specific AP makes it easier to understand how these operations are 
implemented. On a Memory Access Port (MEM-AP), if you perform an AP write transaction to the Data Read/Write 
(DRW) register with either pushed-compare or pushed-verify active:

• The DP holds the data value from the AP write transaction in the pushed-compare logic, see Figure 1-2 on 
page 1-26.

• The AP reads from the address indicated by the MEM-AP Transfer Address Register (TAR).

• The value returned by this read is compared with the value held in the pushed-compare logic, and the 
CTRL/STAT.STICKYCMP bit is set depending on the result. The comparison is masked as required by the 
MASKLANE bits. The logic used for this comparison is shown in Figure 2-1. For more information about 
masking see MASKLANE and the bit masking of the pushed-compare and pushed-verify operations on 
page 2-49.

Whenever an AP write transaction is performed with pushed-compare or pushed-verify enabled, the AP access that 
results is a read operation, not a write.

Note
 • Performing an AP read transaction with pushed-compare or pushed-verify enabled causes UNPREDICTABLE 

behavior.
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• On a SW-DP, this means that performing an AP read transaction with pushed-compare or pushed-verify 
active returns an UNKNOWN value, and the read has UNPREDICTABLE side effects, although the wire-level 
protocol remains coherent.

Example uses of pushed-verify and pushed-find operation on a MEM-AP

You can use pushed-verify to verify the contents of system memory. A series of expected values are written as AP 
transactions. With each write, the pushed-verify logic initiates an AP read access, and compares the result of this 
access with the expected value. If the values do not match, it sets CTRL/STAT.STICKYCMP to 1. This operation 
is described in more detail in Example use of pushed-verify operation on a MEM-AP on page 7-144.

You can use pushed-find to search system memory for a given value. However, this feature is most useful when 
performed using the AP transaction counter, described in The transaction counter. Again, this operation is described 
in more detail in Chapter 7 The Memory Access Port (MEM-AP), in the section Example using the transaction 
counter for a pushed-find operation on a MEM-AP on page 7-145.

2.1.4 The transaction counter

Except in the implementation of the MINDP extension, a Debug Port must include an AP transaction counter, 
CTRL/STAT.TRNCNT. The transaction counter enables a debugger to make a single AP transaction request that 
generates a sequence of AP transactions. With a MEM-AP access, the AP transaction sequence might generate a 
sequence of accesses to the connected memory system.

Each AP defines which registers support sequences of transactions. If an AP register does not support sequences of 
transactions, or SELECT.APSEL selects an AP that is not present, then the result of a sequence of transactions to 
that register is UNPREDICTABLE. Reserved AP registers and the common AP IDR do not support sequences of 
transactions.

Examples of the use of the transaction counter are:

• For a memory fill operation, the transaction counter can repeatedly write a single data value supplied in the 
initial AP transaction request. The MEM-AP includes a mechanism that auto-increments the access address 
after each AP access. This means that a series of AP accesses under the control of the transaction counter 
write the supplied data value to a sequence of memory addresses. For more information see Packed transfers 
and the transaction counter on page 7-139.

• With pushed-compare or pushed-verify operation enabled, the transaction counter can be used when reading 
from the DRW register, to perform a fast search or verify of an area of memory. This use is mentioned in 
Example uses of pushed-verify and pushed-find operation on a MEM-AP, and is described in more detail in 
Example using the transaction counter for a pushed-find operation on a MEM-AP on page 7-145.

Writing a value other than zero to the CTRL/STAT.TRNCNT field generates multiple AP transactions. For example, 
writing 0x001 to this field generates two AP transactions, and writing 0x002 generates three transactions.

The transaction counter does not auto-reload when it reaches zero.

If the transaction counter is not zero, it is decremented after each successful transaction. The transaction counter is 
not decremented and the transaction is not repeated if one of the following is true:
• The transaction counter is zero.
• The CTRL/STAT.STICKYERR flag is set to 1.
• The CTRL/STAT.STICKYCMP flag is set to 1.

If a sequence of operations is terminated because the Sticky Error or Sticky Compare flag was set to 1, the 
transaction counter remains at the value from the last successful transaction. This means that software can recover 
the location of the error, or determine where the compare or verify operation terminated.

2.1.5 Power and reset control 

The Debug Port provides:
• Control bits for system and debug power control. 
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• Control bits for debug reset control.

These control bits are programmable by the debugger, and drive signals into the target system. ADIv5 also 
recommends an external debug interface pin for system reset control. These signals are intended as hints or stimuli 
into existing power and reset controllers.

The Debug Interface does not replace the system power and reset controllers, and the Debug Interface specification 
does not place any requirements on the operation of the system power and reset controllers. 

For more information, see System and debug power and debug reset control on page 2-62.
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2.2 DP architecture versions
This section introduces the concept of Debug Port architecture versions and describes the Debug Port (DP) registers 
in compliant implementations. More information about Debug Ports is given in the following chapters:
• Chapter 3 The JTAG Debug Port (JTAG-DP).
• Chapter 4 The Serial Wire Debug Port (SW-DP).
• Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP).

2.2.1 DP architecture versions summary

Every ARM Debug Interface includes a single Debug Port (DP) that is compliant with one of the DP architecture 
versions. Table 2-1 shows the DP architecture versions.

Although the Debug Port architecture versions are different, their register sets are similar, and are described together 
in this chapter. In the section DP architecture versions summary, the detailed register descriptions always make 
clear if the register is implemented for a specific architecture, and if the implementation is DATA LINK DEFINED.

This section summarizes the Debug Port registers, and gives the register maps for the DP architecture versions 
DPv0, DPv1, and DP2. It contains the following sub-sections:
• Debug Port (DP) registers summary.
• DP architecture version 0 (DPv0) address map on page 2-41.
• DP architecture version 1 (DPv1) address map on page 2-42.
• DP architecture version 2 (DPv2) address map on page 2-43.

One of the significant differences between the JTAG-DP and the SW-DP is how the registers are accessed. For this 
reason, the tables that describe the registers do not include register address information. This information, for each 
Debug Port type, is included at the start of the detailed description of each register.

2.2.2 Debug Port (DP) registers summary

Table 2-2 summarizes the DP registers and shows if a register is implemented in a specific DP architecture version.

Table 2-1 Debug Port architecture versions

Version number Description Debug Port Support Notes

DPv0 DP architecture version 0 JTAG-DP JTAG-DP in ADIv5.0

DPv1 DP architecture version 1 SW-DP, JTAG-DP SW-DP in ADIv5.0

DPv2 DP architecture version 2 SW-DP, JTAG-DP SW-DP version 2 in ADIv5.1

Table 2-2 Summary of Debug Port registers

Name
DP architecture version

DPv0 DPv1 DPv2

ABORT Yes Yes Yes

DPIDR No Yes Yes

CTRL/STAT Yes Yes Yes

SELECT Yes Yes Yes

RDBUFF Yes Yes Yes

DLCR No Yes Yes
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2.2.3 DP architecture version 0 (DPv0) address map

DPv0 provides support for JTAG-DP in ADIv5.

The JTAG-DP register accessed depends on both:
• The Instruction Register (IR) value for the DAP access.
• A[3:2] from the address field of the DAP access.

For more information, see Accessing the JTAG-DP registers.

Table 2-3 shows the DPv0 register map. The A[3:2] field of the DPACC scan chain provides bits[3:2] of the address. 
Bits[1:0] of the address are always 0b00.

The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED. In JTAG-DP, 
this is implemented through the ABORT instruction.

Accessing the JTAG-DP registers

The JTAG-DP registers are only accessed when the Instruction Register (IR) for the DAP access contains the 
DPACC or ABORT instruction. The register accesses for each instruction are:

DPACC The DPACC scan chain accesses the DP CTRL/STAT, SELECT, and RDBUFF registers at 
addresses 0x0 to 0xC, although register address 0x0 is reserved, and the RDBUFF register at 0xC is 
always RAZ/WI on a JTAG-DP.

These registers are shown in the illustration of the JTAG-DP in Figure 1-2 on page 1-26.

ABORT For a write access with address 0x0, the ABORT scan chain accesses the ABORT register.

For a read access with address 0x0, and for any access with address 0x4 to 0xC, the behavior of the 
ABORT scan chain is UNPREDICTABLE.

For more information about the JTAG-DP scan chains see Chapter 3 The JTAG Debug Port (JTAG-DP).

RESEND No Yes Yes

TARGETID No No Yes

DLPIDR No No Yes

TARGETSEL No No Yes

Table 2-2 Summary of Debug Port registers (continued)

Name
DP architecture version

DPv0 DPv1 DPv2

Table 2-3 DPv0 register map

Address Name Access

0x0a

a. Reserved, UNPREDICTABLE.

- -

0x4 CTRL/STAT RW

0x8 SELECT RW

0xC RDBUFF R

- Wa
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2.2.4 DP architecture version 1 (DPv1) address map

DPv1 extends DPv0, adding support for Serial Wire Debug protocol version 1 and defining the following additional 
registers:
• The Debug Port Identification Register, DPIDR.
• The Data Link Control Register, DLCR.
• Additional DATA LINK DEFINED registers.

In addition, the definition of some of the DPv0 registers is changed:
• The behavior of writes to bits [4:1] of the ABORT register is defined.
• The behavior on writing to bits [5:4, 1] of the CTRL/STAT register is DATA LINK DEFINED.
• The SELECT register is write-only.

For most register addresses, different registers are addressed on read and write accesses. In addition, the 
SELECT.DPBANKSEL bit determines which register is accessed at address 0x04.

Table 2-4 shows the DPv1 register map.

The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED, and:
• DP register 0 is reserved for the purpose if defined by the data link.
• In JTAG-DP, this is implemented through the ABORT instruction.

Table 2-4 DPv1 register map

Addressa DPBANKSELb Name Access Notes

0x0 x DPIDR RO -

- WO DATA LINK DEFINED, as either:
• ABORT, see ABORT, AP Abort register on page 2-45
• Reserved, UNPREDICTABLE

0x4 0x0 CTRL/STAT RW -

0x1 DLCR RW -

0x2 to 0xF - - UNPREDICTABLE

0x8 x - RO DATA LINK DEFINED

SELECT WO -

0xC x RDBUFF RO -

- WO DATA LINK DEFINED

a. Bits [1:0] of the address are always 0b00.
b. SELECT.DPBANKSEL. 
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SW-DP DATA LINK DEFINED registers, DPv1

Table 2-5 shows the DATA LINK DEFINED SW-DP registers for a DPv1 implementation. Bits[1:0] of the address are 
always 0b00.

For a DPv1 JTAG-DP, all DATA LINK DEFINED registers are reserved. Accesses to a reserved DATA LINK DEFINED 
register are UNPREDICTABLE.

2.2.5 DP architecture version 2 (DPv2) address map

DPv2 extends DPv1, adding support for Serial Wire Debug protocol version 2 and defining the following additional 
registers:
• The Target Identifier register, TARGETID.
• The Data Link Protocol Identification Register, DLPIDR.
• The DATA LINK DEFINED Target Selection register, TARGETSEL.
• The EVENT Status register, EVENTSTAT.

For most register addresses, different registers are addressed on read and write accesses. In addition, an extended 
SELECT.DPBANKSEL field determines which register is accessed at address 0x04.

Table 2-6 shows the DPv2 register map.

Table 2-5 SW-DP data link defined registers, DPv1

Address Name Access

0x0 ABORT WO

0x8 RESEND RO

0xCa

a. Reserved, SBZ.

- WO

Table 2-6 DPv2 address map

Addressa DPBANKSELb Name Access Notes

0x0 x DPIDR RO -

- WO DATA LINK DEFINED, as either:
• ABORT, see ABORT, AP Abort register on page 2-45
• Reserved, RES0

0x4 0x0 CTRL/STAT RW -

0x1 DLCR RW -

0x2 TARGETID RO -

0x3 DLPIDR RO -

0x4 EVENTSTAT RO -

All other values - - Reserved, RES0

0x8 x - RO DATA LINK DEFINED

SELECT WO -
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The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED, and:
• DP register 0 is reserved for the purpose if defined by the data link.
• In JTAG-DP, this is implemented through the ABORT instruction.

SW-DP DATA LINK DEFINED registers, DPv2

Table 2-7 shows the DATA LINK DEFINED SW-DP registers for a DPv2 implementation:

For a DPv2 JTAG-DP, all DATA LINK DEFINED registers are RES0.

2.2.6 Register maps, and accesses to reserved addresses

The register memory maps for the DP and the AP within the DAP are shown in:
• Figure 1-2 on page 1-26, for accesses to JTAG-DP registers.
• Figure 7-1 on page 7-129, for accesses to MEM-AP registers.
• Figure 8-1 on page 8-162, for accesses to JTAG-AP registers.

There are a number of reserved addresses in these register maps. Reserved AP registers are RES0.

0xC x RDBUFF RO -

- WO DATA LINK DEFINED

a. Bits [1:0] of the address are always 0b00.
b. SELECT.DPBANKSEL field.

Table 2-6 DPv2 address map (continued)

Addressa DPBANKSELb Name Access Notes

Table 2-7 SW-DP data link defined registers, DPv2

Addressa

a. Bits [1:0] of the address are always 0b00.

SWD 
protocol 
version

Name Access For description see:

0x0 x ABORT WO -

0x8 x RESEND RO -

0xC v1 - WO Reserved, SBZ

v2 TARGETSEL WO -
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2.3 DP register descriptions
This section gives full descriptions of the DP registers.

The registers are listed in name order.

2.3.1 ABORT, AP Abort register

The AP Abort register attributes are:

Purpose The ABORT register forces an AP transaction abort.

In DPv1 and DPv2 only, the ABORT register has additional fields that clear error and sticky flag 
conditions. See Clearing the sticky error and compare flags in the CTRL/STAT register on 
page 2-50. In DPv0, these fields are reserved, SBZ.

Configurations 

A DP architecture register. The ABORT register is defined and implemented in DPv0, DPv1, and 
DPv2.

Attributes The ABORT register is:

• A write-only register.

• Accessed in a DATA LINK DEFINED manner:

JTAG-DP Access is through its own scan-chain. See the JTAG-DP ABORT register.

SW-DP Accessed by a write to offset 0x0 of the DP register map.

• Always accessible, completes all accesses on the first attempt, and returns an OK response if 
a valid transaction is received.

The ABORT register bit assignments are:

Bits[31:5] Reserved, SBZ.

ORUNERRCLR, bit[4], DPv1 or higher  

Write 1 to this bit to clear the CTRL/STAT.STICKYORUN overrun error bit to 0.

WDERRCLR, bit[3], DPv1 or higher 

Write 1 to this bit to clear the CTRL/STAT.WDATAERR write data error bit to 0.

STKERRCLR, bit[2], DPv1 or higher 

Write 1 to this bit to clear the CTRL/STAT.STICKYERR sticky error bit to 0.

STKCMPCLR, bit[1], DPv1 or higher 

Write 1 to this bit to clear the CTRL/STAT.STICKYCMP sticky compare bit to 0. It is 
IMPLEMENTATION DEFINED whether this bit is implemented. See MINDP, Minimal Debug Port 
extension on page 2-36. 

Bits[4:1]. DPv0 

Reserved, SBZ.

Reserved, SBZ

31 5 4 3 2 1 0

ORUNERRCLR
WDERRCLR

STKERRCLR
STKCMPCLR

DAPABORT

DPv1 or higher
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DAPABORT, bit[0] 

Write 1 to this bit to generate a DAP abort. This aborts the current AP transaction.

In DPv0, this bit is SBO.

Do this only if the debugger has received WAIT responses over an extended period. See DAP 
Aborts.

DAP Aborts

Writing 1 to the ABORT.DAPABORT register bit generates a DAP abort, causing the current AP transaction to 
abort. This also terminates the transaction counter, if it was active. It is IMPLEMENTATION DEFINED whether the AP 
propagates the abort, for example by aborting a transaction in progress.

From a software perspective, this is a fatal operation. It discards any outstanding and pending transactions, and 
leaves the AP in an UNPREDICTABLE state. However, on a SW-DP, the sticky error bits are not cleared to 0.

Caution
 Use this function only in extreme cases, when debug host software has observed stalled target hardware for an 
extended period. Stalled target hardware is indicated by repeated WAIT responses.

After a DAP abort:

• It is IMPLEMENTATION DEFINED which registers, if any, in the AP that was aborted can be accessed. If the 
register cannot be accessed, the DP returns a WAIT response to an AP access to the register. ARM 
recommends that any AP register that is not directly related to stalling transaction is accessible, to allow a 
debugger to diagnose the cause of the error.

• A DP access or an AP access to any other AP are accepted by the DP. This includes AP accesses to 
non-existent APs, which are defined to behave as RAZ/WI.
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2.3.2 CTRL/STAT, Control/Status register

The CTRL/STAT register attributes are:

Purpose The Control/Status register provides control of the DP and status information about the DP.

Configurations 

A DP architecture register. The CTRL/STAT register is defined and implemented in DPv0, DPv1, 
and DPv2.

Attributes The CTRL/STAT register is:

• A read/write register, in which some fields are RO, meaning they ignore writes. See the field 
descriptions for more information.

• Accessed by a read or write to offset 0x4 of the DP register map, when 
SELECT.DPBANKSEL is 0x0.

The CTRL/STAT register bit assignments are: 

CSYSPWRUPACK, bit[31] 

System powerup acknowledge. Indicates the status of the CSYSPWRUPACK signal. See Power 
control requirements and operation on page 2-64.

This bit is RO, meaning it ignores writes.

CSYSPWRUPREQ, bit[30] 

System powerup request. This bit controls the CSYSPWRUPREQ signal. See Power control 
requirements and operation on page 2-64.

After a powerup reset, this bit is set 0.

CDBGPWRUPACK, bit[29] 

Debug powerup acknowledge. Indicates the status of the CDBGPWRUPACK signal. See Power 
control requirements and operation on page 2-64.

This bit is RO, meaning it ignores writes.

CDBGPRWUPREQ, bit[28] 

Debug powerup request. This bit controls the CDBGPRWUPREQ signal. See Power control 
requirements and operation on page 2-64.

After a powerup reset, this bit is set to 0.

CDBGRSTACK, bit[27] 

Debug reset acknowledge. Indicates the status of the CDBGRSTACK signal. See Debug reset 
control on page 2-66.

This bit is RO, meaning it ignores writes.

31 5 4 3 2 1 0

WDATAERR
READOK

STICKYERR

TRNMODE

30 29 28 27 26 25 24 23 12 11 8 7 6

TRNCNT

CSYSPWRUPACK
CSYSPWRUPREQ
CDBGPWRUPACK
CDBGPWRUPREQ
CDBGRSTACK
CDBGRSTREQ

RES0

MASKLANE

STICKYCMP

STICKYORUN
ORUNDETECT
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CDBGRSTREQ, bit[26] 

Debug reset request. This bit controls the CDBGRSTREQ signal. See Debug reset control on 
page 2-66.

It is IMPLEMENTATION DEFINED whether this bit is RW or RAZ/WI. See Emulation of debug reset 
request on page 2-67.

After a powerup reset, this bit is set to 0.

Bits[25:24] Reserved, RES0.

TRNCNT, bits[23:12] 

Transaction counter.

See The transaction counter on page 2-38.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal Debug 
Port extension on page 2-36.

After a powerup reset, the value of this field is UNKNOWN.

MASKLANE, bits[11:8] 

Indicates the bytes to be masked in pushed-compare and pushed-verify operations.

See MASKLANE and the bit masking of the pushed-compare and pushed-verify operations on 
page 2-49.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal Debug 
Port extension on page 2-36.

After a powerup reset, the value of this field is UNKNOWN.

WDATAERR, bit[7] 

This bit is DATA LINK DEFINED:

• On a JTAG-DP this bit is reserved, RES0.

• On an SW-DP. this bit is RO/WI.
This bit is set to 1 if a Write Data Error occurs. This happens if:

— There is a a parity or framing error on the data phase of a write.

— A write that has been accepted by the DP is then discarded without being submitted to 
the AP.

For more information, see Protocol errors, SW-DP on page 2-36.
On an SW-DP, this bit is cleared to 0 by writing 1 to the ABORT.WDERRCLR bit.

After a powerup reset, this bit is set to 0.

READOK, bit[6], DPv1 or higher 

This bit is DATA LINK DEFINED

• On JTAG-DP, the bit is reserved, RES0.

• On SW-DP, access is RO/WI.
The bit is set to 1 if the response to the previous AP read or RDBUFF read was OK. It is 
cleared to 0 if the response was not OK.
This flag always indicates the response to the last AP read access. See Protocol error 
response on page 4-97.

After a powerup reset, this bit is set to 0.

STICKYERR, bit[5] 

This bit is set to 1 if an error is returned by an AP transaction. See Sticky flags and DP error 
responses on page 2-34.

The behavior on writing is DATA LINK DEFINED:
• On a JTAG-DP, access is R/W1C.
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• On a SW-DP, access is RO/WI.

The clearing of this bit to 0 is DATA LINK DEFINED, see Clearing the sticky error and compare flags 
in the CTRL/STAT register on page 2-50.

After a powerup reset, this bit is set to 0.

STICKYCMP, bit[4] 

This bit is set to 1 when a match occurs on a pushed-compare or a pushed-verify operation. See 
Pushed-compare and pushed-verify operations on page 2-36.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal Debug 
Port extension on page 2-36.

The behavior on writing is DATA LINK DEFINED:
• On a JTAG-DP access is R/W1C.
• On an SW-DP access is RO/WI.

The clearing of this bit to 0 is DATA LINK DEFINED, see Clearing the sticky error and compare flags 
in the CTRL/STAT register on page 2-50.

After a powerup reset, this bit is set to 0.

TRNMODE, bits[3:2] 

This field sets the transfer mode for AP operations. See TRNMODE, Transfer mode on page 2-50.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal Debug 
Port extension on page 2-36.

After a powerup reset, the value of this field is UNKNOWN.

STICKYORUN, bit[1] 

If overrun detection is enabled, this bit is set to 1 when an overrun occurs. See bit [0] of this register 
for details of enabling overrun detection.

The behavior on writing is DATA LINK DEFINED:
• On a JTAG-DP, access is R/W1C.
• On an SW-DP, access is RO/WI.

The clearing of this bit to 0 is DATA LINK DEFINED, see Clearing the sticky error and compare flags 
in the CTRL/STAT register on page 2-50.

After a powerup reset, this bit is set to 0.

ORUNDETECT, bit[0] 

This bit is set to 1 to enable overrun detection. For more information see Overrun detection on 
page 2-34.

After a powerup reset, this bit is set to 0.

Note
 • TRNCNT, MASKLANE, and TRNMODE are not supported in MINDP configuration. In MINDP 

configuration, the effect of writing a value other than zero to either TRNCNT or TRNMODE is 
UNPREDICTABLE.

• STICKYCMP is not supported in MINDP configuration. In MINDP configuration, the effect of writing a 1 
to STICKYCMP is UNPREDICTABLE.

MASKLANE and the bit masking of the pushed-compare and pushed-verify operations

The MASKLANE field, bits [11:8] of the CTRL/STAT register, is only relevant if the Transfer Mode is set to 
pushed-verify or pushed-compare operation. See TRNMODE, Transfer mode on page 2-50.
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In the pushed operations, the word supplied in an AP write transaction is compared with the current value at the 
target AP address. For more information see Pushed-compare and pushed-verify operations on page 2-36. The 
MASKLANE field lets you specify that the comparison is made using only certain bytes of the values. Each bit of 
the MASKLANE field corresponds to one byte of the AP values. Therefore, each bit is said to control one byte lane 
of the compare operation.

Table 2-8 shows how the bits of MASKLANE control the comparison masking.

Note
 A zero in any position excludes the corresponding byte lane from the comparison.

If MASKLANE is set to 0b1111 then the comparison is made on the complete word. In this case the mask is 
0xFFFFFFFF.

TRNMODE, Transfer mode

This field sets the transfer mode for AP operations. Table 2-9 lists the permitted values of this field, and their 
meanings.

In normal operation, AP transactions are passed to the AP for processing, as described in Using the Access Port to 
access debug resources on page 1-27.

In pushed-verify and pushed-compare operations, the DP compares the value supplied in an AP write transaction 
with the value held in the target AP address. The AP write transaction generates a read access to the debug memory 
system. These operations are described in Pushed-compare and pushed-verify operations on page 2-36.

Clearing the sticky error and compare flags in the CTRL/STAT register

In the CTRL/STAT register, the sticky error flags are:
• STICKYERR, bit[5].
• STICKYCMP, bit[4].

Table 2-8 Control of pushed operation comparisons by MASKLANE

MASKLANEa

a. Bits [11:8] of the CTRL/STAT register.

Meaning Mask used for comparisonsb

b. Bytes of the mask shown as -- are determined by the other bits of MASKLANE.

0b1xxx Include byte lane 3 in comparisons. 0xFF------

0bx1xx Include byte lane 2 in comparisons. 0x--FF----

0bxx1x Include byte lane 1 in comparisons. 0x----FF--

0bxxx1 Include byte lane 0 in comparisons. 0x------FF

Table 2-9 TRNMODE bit definitions

TRNMODEa

a. Bits [3:2] of the CTRL/STAT register.

AP Transfer mode

0b00 Normal operation.

0b01 Pushed-verify operation.

0b10 Pushed-compare operation.

0b11 Reserved.
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• STICKYORUN, bit[1].
• WDATAERR, bit[7], SW-DP only.

The descriptions of these bits in CTRL/STAT indicate the condition that sets each bit to 1. When one of these bits 
is set to 1, a write of 0 to that bit is ignored. These bits can be cleared to 0 as follows:

JTAG-DP, all implementations 

Write 1 to the appropriate bit of the CTRL/STAT register. For example, if the STICKYERR flag, bit 
[5], is set to 1 then you must write 1 to bit [5] to clear the flag to 0.

You can use a single write of the CTRL/STAT register to clear multiple flags to 0 if necessary.

SW-DP, all implementations, and JTAG-DP, DPv1 and higher 

Write 1 to the appropriate CLR field of the ABORT register:
• To clear STICKYERR to 0, write 1 to the ABORT.STKERRCLR field.
• To clear STICKYCMP to 0, write 1 to the ABORT.STKCMPCLR field.
• To clear STICKYORUN to 0, write 1 to the ABORT.ORUNERRCLR field.
• To clear WDATAERR to 0, write 1 to the ABORT.WDERRCLR field, SW-DP only.

You can use a single write of the ABORT register to clear multiple flags to 0 if necessary.

After clearing the flag to 0, you might have to access the DP and AP registers to find what caused the flag to be set 
to 1. Typically:

• For the STICKYERR or STICKYCMP flag, you must find which location was accessed to cause the flag to 
be set to 1.

• For the STICKYORUN flag, you must find which DP or AP transaction caused the overrun. You then have 
to repeat your transactions from that point.

• For the WDATAERR flag, you must resend the corrupted data.
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2.3.3 DLCR, Data Link Control Register

The DLCR attributes are:

Purpose Controls the operating mode of the Data Link.

Configurations 

A DP architecture register. The DLCR is defined and implemented only in DPv1 and DPv2.

Attributes The DLCR is:

• DATA LINK DEFINED.

• A read/write register.

• Accessed by a read or write to offset 0x4 of the DP address map when 
SELECT.DPBANKSEL is set to 0x1.

See the field descriptions for information about the register reset value.

For SW-DP, the DLCR bit assignments are:

Bits[31:10] Reserved, RES0.

TURNROUND, bits[9:8] 

Turnaround tristate period. After a powerup or line reset, this field is set to 0b00.

Note
 Support for varying the turnaround tristate period is IMPLEMENTATION DEFINED. An implementation 

that does not support variable turnaround must treat writing a value other than 0b00 to the 
TURNROUND field as an immediate protocol error.

Bit[7] Reserved, RES0.

Bit[6] Reserved, RES1.

Bits[5:0] Reserved, RES0.

TURNROUND, bits[9:8]

This field defines the turnaround tristate period, see Line turn-round on page 4-90. Table 2-10 shows the permitted 
values of this field, and their meanings.

Table 2-10 Turnaround tristate period field, TURNROUND, bit definitions

DLCR.TURNROUND Turnaround tristate period

0b00 1 data perioda.

0b01 2 data periodsa.

0b10 3 data periodsa.

0b11 4 data periodsa.

(1)(0)Reserved, RES0

31 010 9 8 7 6 5

TURNROUND

Reserved, RES0
Reserved
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2.3.4 DLPIDR, Data Link Protocol Identification Register

The DLPIDR attributes are:

Purpose The DLPIDR provides protocol version information.

Configurations 

A DP architecture register. The DLPIDR is defined and implemented only in DPv2.

Attributes The DLPIDR is:
• A read-only register.
• Accessed by a read to offset 0x4 of the DP register map when SELECT.DPBANKSEL is set 

to 0x3.

The contents of the DLIPR are DATA LINK DEFINED. For SW-DP, the DLPIDR bit assignments are:

TINSTANCE, bits[31:28] 

IMPLEMENTATION DEFINED. Defines an instance number for this device. This value must be unique 
for all devices with identical TARGETID[27:0] fields that are connected together in a multi-drop 
system.

Bits[27:4] Reserved, UNKNOWN.

PROTVSN, bits[3:0] 

Defines the Serial Wire Debug protocol version that is implemented. Valid values for this field are:
0x1 Serial Wire Debug protocol version 2. Adds support for multidrop extensions. See 

Chapter 4 The Serial Wire Debug Port (SW-DP).

All other values of this field are reserved.

Note
 A Serial Wire Debug Port that implements DPv2, must implement at least Serial Wire Debug protocol version 2.

For JTAG-DP, the DLPIDR is reserved and accessing the register is UNPREDICTABLE.

a. A data period is the period of a single data bit on the Serial Wire Debug interface. 

PROTVSNReserved, RES0

31 28 27 4 3 0

TINSTANCE
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2.3.5 DPIDR, Debug Port Identification Register

The DPIDR attributes are:

Purpose The DPIDR provides information about the Debug Port.

Configurations 

A DP architecture register. The DPIDR is defined and implemented only in DPv1 and DPv2.

Attributes The DPIDR is:
• A read-only register.
• Accessed by a read to offset 0x0 of the DP register map.

Access to the DPIDR is not affected by the value of SELECT.DPBANKSEL.

The DPIDR bit assignments are:

REVISION, bits[31:28] 

Revision code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO, bits[27:20] 

Part Number for the Debug Port. This value is provided by the designer of the Debug Port and must 
not be changed.

Bits[19:17] Reserved, RES0.

MIN, bit[16] Minimal Debug Port (MINDP) functions implemented:
0 Transaction counter, Pushed-verify, and Pushed-find operations are implemented.
1 Transaction counter, Pushed-verify, and Pushed-find operations are not implemented.

VERSION, bits[15:12] 

Version of the Debug Port architecture implemented. Permitted values are:
0x0 Reserved. Implementations of DPv0 do not implement DPIDR.
0x1 DPv1 is implemented.
0x2 DPv2 is implemented.

All remaining values are reserved.

DESIGNER, bits[11:1] 

Designer ID. An 11-bit JEDEC code formed from the JEDEC JEP106 continuation code and 
identity code. The ID identifies the designer of the Debug Port. The ARM value for this field is 
0x23B. Other designers must insert their own JEDEC-assigned code here.

Bit[0] RAO.

Note
 • In DPv0, the DPIDR is reserved and accesses are UNPREDICTABLE.

• In all DP architecture versions, a JTAG-DP implementation must implement the IDCODE instruction and 
IDCODE scan-chain. The architecture does not require that the TAP IDCODE register value and the DPIDR 
value are the same.

RES0PARTNOREVISION VERSION

Reserved
MIN

1

31 28 27 20 19 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 1 1

(Value shown is the ARM value)
DESIGNER
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2.3.6 EVENTSTAT, Event Status register

The EVENTSTAT register attributes are:

Purpose The EVENTSTAT register is used by the system to signal an event to the external debugger. The 
nature of the event is IMPLEMENTATION DEFINED.

Configurations 

A DP architecture register. The EVENTSTAT register is defined and implemented only in DPv2.

Attributes The EVENTSTAT register is:
• A read-only register.
• Accessed by a read to offset 0x4 of the DP register map when SELECT.DPBANKSEL is set 

to 0x4.

The EVENTSTAT register bit assignments are:

Bits[31:1] Reserved, RES0.

EA, bit[0] Event status flag. Valid values for this bit are:
0 An event requires attention.
1 There is no event requiring attention.

If no event is implemented, this bit is RAZ.

ARM recommends that the event is either:

• Connected to an output trigger of a CoreSight Cross-Trigger Interface (CTI) with software acknowledge.

• For a uniprocessor system only, connected to an output from a processor that indicates whether the processor 
is halted:

— For ARMv6-M and ARMv7-M processors, the recommended HALTED signal.

— For all other ARM architecture processors, the recommended DBGACK signal.

Note
 The status of the event is inverted in the register. This means that implementations that do not implement an event 
always indicate that an event requires attention. That is, that the debugger must poll registers elsewhere to detect 
the status of the system.

RES0

31 1 0

EA
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 2-55
ID080813 Non-Confidential



2 The Debug Port (DP) 
2.3 DP register descriptions
2.3.7 RDBUFF, Read Buffer register

The RDBUFF register attributes are:

Purpose 

The RDBUFF register captures data from the AP, presented as the result of a previous read.

Configurations 

A DP architecture register. The RDBUFF register is defined and implemented in DPv0, DPv1, and 
DPv2.

Attributes 

The RDBUFF register is:

• A 32-bit read-only buffer.

• Accessed by a read of offset 0xC in the DP register map.

• Has DATA LINK DEFINED behavior:

JTAG-DP See Read Buffer implementation and use on a JTAG-DP.

SW-DP See Read Buffer implementation and use on a SW-DP.

Read Buffer implementation and use on a JTAG-DP

On a JTAG-DP, the Read Buffer is always RAZ/WI.

The Read Buffer is architecturally defined to provide a DP read operation that does not have any side effects. This 
means that a debugger can insert a DP read of RDBUFF at the end of a sequence of operations, to return the final 
AP Read Result and ACK values.

Read Buffer implementation and use on a SW-DP

On a SW-DP, performing a read of the Read Buffer captures data from the AP, presented as the result of a previous 
read, without initiating a new AP transaction. This means that reading the Read Buffer returns the result of the last 
AP read access, without generating a new AP access.

After you have read the DP Read Buffer, its contents are no longer valid. The result of a second read of the DP Read 
Buffer is UNKNOWN.

If you require the value from an AP register read, that read must be followed by one of:
• A second AP register access, with the appropriate AP selected as the current AP.
• A read of the DP Read Buffer.

The second access to either the AP or the DP stalls until the result of the original AP read is available.
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2.3.8 RESEND, Read Resend register

The RESEND register attributes are:

Purpose 

The RESEND register enables the read data to be recovered from a corrupted debugger transfer 
without repeating the original AP transfer.

Configurations 

A DP architecture register. The RESEND register is defined and implemented only in DPv1 and 
DPv2.

Attributes 

The RESEND register is:

• A read-only register.

• Accessed by a read of offset 0x8 in the DP register map.

• DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.

SW-DP The register is always implemented.

Note
 ARM recommends that debuggers only access the RESEND register when a failed read has been indicated by the 
SW-DP, and at no other time. This is because an implementation is permitted to treat reads of RESEND as a protocol 
error if it cannot resend the information.

Performing a read to the RESEND register does not capture new data from the AP, it returns the value that was 
returned by the last AP read or DP RDBUFF read.

Reading the RESEND register enables the read data to be recovered from a corrupted SW-DP transfer without 
having to re-issue the original read request, or generate a new access to the connected debug memory system.

The RESEND register can be accessed multiple times, it always returns the same value until a new access is made 
to an AP register or the DP RDBUFF register.
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2.3.9 SELECT, AP Select register

The SELECT register attributes are:

Purpose 

The SELECT register:
• Selects an Access Port (AP) and the active register banks within that AP.
• Selects the DP address bank.

Configurations 

A DP architecture register. The SELECT register is defined and implemented in DPv0, DPv1, and 
DPv2.

Attributes 

In DPv0, the SELECT register:
• Is a RW register.
• Is accessed by a read or write of the DP register at offset 0x8.

Note
 This specification deprecates reading the SELECT register in a DPv0 implementation.

In DPv1 and DPv2, the SELECT register:
• Is a WO register.
• Is accessed by a write to DP register 0x8.

The SELECT register bit assignments are:

APSEL, bits[31:24] 

Selects an AP. If APSEL is set to a non-existent AP then all AP transactions return zero on reads 
and are ignored on writes. See Register maps, and accesses to reserved addresses on page 2-44.

After a powerup reset, the value of this field is UNKNOWN.

Note
 Every ARM Debug Interface implementation must include at least one AP.

Bits[23:8] Reserved, RES0.

APBANKSEL, bits[7:4] 

Selects the active four-word register bank on the current AP. See Using the Access Port to access 
debug resources on page 1-27.

After a powerup reset, the value of this field is UNKNOWN.

DPBANKSEL, bit[3:0] 

Debug Port address bank select, see DPBANKSEL on page 2-59.

After a powerup reset, this field is set to 0.

APSEL

31 4 3 0

APBANKSEL

DPBANKSEL

24 23 8 7

Reserved
RES0
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DPBANKSEL

The behavior of SELECT.BANKSEL depends on the DP version, as follows:

DPv0 In DPv0 the SELECT.DPBANKSEL field must be written as zero, otherwise accesses to DP 
register 0x4 are UNPREDICTABLE.

DPv1 In DPv1 the SELECT.DPBANKSEL field controls which SW-DP register is selected at address 0x4, 
and Table 2-11 shows the permitted values of this field.

All other values of SELECT.DPBANKSEL are reserved. If the field is set to a reserved value, 
accesses to DP register 0x4 are UNPREDICTABLE.

DPv2 In DPv2 the SELECT.DPBANKSEL field controls which SW-DP register is selected at address 0x4, 
and Table 2-12 shows the permitted values of this field.

All other values of SELECT.DPBANKSEL are reserved. If the field is set to a reserved value, 
accesses to DP register 0x4 are RES0.

Note
 Previous descriptions of ADIv5 have described DPBANKSEL as a single-bit field called CTRSEL, defined only 
for SW-DP. From issue B of this document, DPBANKSEL is redefined. The new definition is 
backwards-compatible.

Table 2-11 DPBANKSEL SW-DP register allocation in DPv1

DPBANKSEL DP register at address 0x4

0x0 CTRL/STAT

0x1 DLCR

Table 2-12 DPBANKSEL SW-DP register allocation in DPv2

DPBANKSEL DP register at address 0x4

0x0 CTRL/STAT

0x1 DLCR

0x2 TARGETID

0x3 DLPIDR

0x4 EVENTSTAT
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2.3.10 TARGETID, Target Identification register

The TARGETID register attributes are:

Purpose 

The TARGETID register provides information about the target when the host is connected to a 
single device.

Configurations 

A DP architecture register. The TARGETID register is defined and implemented only in DPv2.

Attributes 

The TARGETID register is:

• A read-only register.

• Accessed by a read to offset 0x4 of the DP register map when SELECT.DPBANKSEL is set 
to 0x2.

The TARGETID register bit assignments are:

TREVISION, bits[31:28] 

Target revision.

TPARTNO, bits[27:12] 

IMPLEMENTATION DEFINED. The value is assigned by the designer of the part. The value must be 
unique to the part.

TDESIGNER, bits[11:1] 

IMPLEMENTATION DEFINED. An 11-bit code formed from the JEDEC JEP106 continuation code and 
identity code. The ID identifies the designer of the part. Designers must insert their JEDEC-assigned 
code here.

Note
 The ARM JEP106 value is not shown for the TDESIGNER field. ARM might design a DP 

containing the TARGETID register, but typically, the designer of the part, referenced in the 
TPARTNO field, is another designer who creates a part around the licensed ARM IP. If the designer 
of the part is ARM, then the value of this field is 0x23B.

Bit[0] RAO.

TDESIGNERTPARTNOTREVISION 1

31 28 27 12 11 1 0
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2.3.11 TARGETSEL, Target Selection register

The TARGETSEL register attributes are:

Purpose 

The TARGETSEL register selects the target device in a Serial Wire Debug multi-drop system. See 
Target selection.

Configurations 

A DP architecture register. The TARGETSEL register is defined and implemented only in DPv2.

Attributes 

The TARGETSEL register is:
• A write-only register.
• DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.
SW-DP The register is implemented if SWD protocol version 2 is implemented.

• Accessed by a write to offset 0xC of the DP register map.

Note
 In issue A of this document, this register was called ROUTESEL, and was a reserved write-only register.

The TARGETSEL register bit assignments are:

TINSTANCE, bits[31:28] 

IMPLEMENTATION DEFINED. The instance number for this device. See DLPIDR.

TPARTNO, bits[27:12] 

IMPLEMENTATION DEFINED. The value assigned by the designer of the part. See TARGETID.

TDESIGNER, bits[11:1] 

IMPLEMENTATION DEFINED. The 11-bit code formed from the JEDEC JEP106 continuation code and 
identity code. See TARGETID.

Bit[0] SBO.

Target selection

On a write to TARGETSEL immediately following a line reset sequence, the target is selected if both the following 
conditions are met:
• Bits [31:28] match bits [31:28] in the DLPIDR.
• Bits [27:0] match bits [27:0] in the TARGETID register.

Writing any other value deselects the target. Debug tools must write 0xFFFFFFFF to deselect all targets. This is an 
invalid TARGETID value. All other invalid TARGETID values are reserved.

During the response phase of a write to the TARGETSEL register, the target does not drive the line. See Protocol 
errors, SW-DP on page 2-36 for more information.

TDESIGNERTPARTNO 1

31 28 27 12 11 1 0

TINSTANCE
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2.4 System and debug power and debug reset control
This section gives detailed information about system and debug power, and debug reset control.

2.4.1 The DAP power domains model

The DAP model supports multiple power domains. These provide support for debug components that can be 
powered down.

Three power domains are modeled:

Always-on power domain 

This must be powered up for the debugger to connect to the device.

System power domain 

This includes system components.

Debug power domain 

This includes all of the debug subsystem.

The system and debug power domains can be subdivided if necessary. However, to define a simple debug interface, 
the device must be partitioned into system and debug power domains at the top level. Any finer-grained control is 
outside the scope of this model.

In most situations, debuggers power up the complete SoC. However, if a debugger is investigating an energy 
management issue, it might want to power up only the debug domain. To achieve this, SoC designers might want 
to map the power controller into a bus segment that the DAP can access when only the debug power domain is 
powered up.

When using an ARM Debug Interface, for the debug process to work correctly, systems must not remove power 
from the DP during a debug session. If power is removed, the DAP controller state is lost. However, the DAP is 
designed to permit the rest of the DAP and the system to be powered down and debugged while maintaining power 
to the DP.

The DP registers reside in the always-on power domain, on the external interface side of the DP. Therefore, they can 
always be driven, enabling powerup requests to be made to a system power controller. The power and reset control 
bits are part of the DP CTRL/STAT register. See Debug reset control on page 2-66 for more information about the 
reset control bits in this register.

ADIv5 defines two pairs of power control signals:
• CDBGPWRUPREQ and CDBGPWRUPACK.
• CSYSPWRUPREQ and CSYSPWRUPACK.

Table 2-13 summarizes the programmers’ model for the power control signal pairs.

These signals are expected to provide hints to the system power/clock controller. The following sections describe 
these signal pairs.

Table 2-13 Debug Port programmers’ model

Signal Programmers’ model

CDBGPWRUPREQ Bit[28] of the CTRL/STAT register

CDBGPWRUPACK Bit[29] of the CTRL/STAT register

CSYSPWRUPREQ Bit[30] of the CTRL/STAT register

CSYSPWRUPACK Bit[31] of the CTRL/STAT register
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CDBGPWRUPREQ and CDBGPWRUPACK

CDBGPWRUPREQ is the signal from the debug interface to the power controller. This signal requests the system 
power controller to fully power up and enable clocks in the debug power domain. CDBGPWRUPACK is the signal 
from the power controller to the debug interface. When CDBGPWRUPREQ is asserted, the power controller 
powers up the debug power domain and then asserts CDBGPWRUPACK to acknowledge that it has responded to 
the request.

Which components are in the debug power domain controlled by CDBGPWRUPREQ is IMPLEMENTATION 
DEFINED. This domain might include all debug components in the system, or might be limited, for example to 
exclude components that have additional levels of power control. The CDBGPWRUPREQ signal indicates that 
the debugger requires the debug resources of these components to be communicative. Communicative means that 
the debugger can access at least enough registers of the debug resource for it to determine the state of the resource. 
Whether the resource is active is IMPLEMENTATION DEFINED.The power/clock controller must power up and run the 
clocks of as many domains as necessary to comply with this request from the debugger for the resources to be 
communicative.

The power/clock controller must honor CDBGPWRUPREQ for as long as it is asserted. For example, if a 
component in a debug power domain requests to have its clocks stopped, the request must be emulated for 
non-debug logic within that power domain. This includes all components with a single shared domain.

If some debug resources of a component are not in the debug power domain, then at least the minimal debug 
interface of the component must be powered up. Power can be removed from the remainder of the component if 
both the following requirements are met:
• There is some means to save and restore the state of the debug resources.
• The remainder of the component does not require to be powered for the debugger to be able to communicate 

with the debug resources.

The means to save and restore these resources might include software means. If the debug resources do lose their 
value when power is removed from the remainder of the component, then the debug interface must include means 
for the debugger to discover that the programmed values have been lost.

CDBGPWRUPACK is the acknowledge signal for the CDBGPWRUPREQ request signal. CDBGPWRUPACK 
must be asserted for as long as CDBGPWRUPREQ is asserted. See Powerup request and acknowledgement timing 
on page 2-65.

CSYSPWRUPREQ and CSYSPWRUPACK

CSYSPWRUPREQ is the signal from the debug interface to the power controller. This signal requests the system 
power controller to fully power up and enable clocks in the system power domain. CSYSPWRUPACK is the signal 
from the power controller to the debug interface. When CSYSPWRUPREQ is asserted, the power controller 
powers up the system power domain and then asserts CSYSPWRUPACK to acknowledge that it has responded to 
the request.

Which components are in the system power domain controlled by CSYSPWRUPREQ is IMPLEMENTATION 
DEFINED. This domain might include all debug components in the system, or might be limited, for example to 
exclude components that have additional levels of power control, such as processors that implement independent 
Core Powerup Request controls.

The CSYSPWRUPREQ signal indicates that the debugger requires all debug resources of these components to be 
active. Active means that the debug resource is capable of performing its debug function. An active resource is also 
communicative.

The power/clock controller must honor CSYSPWRUPREQ for as long as it is asserted.

CSYSPWRUPREQ has no effect on debug components controlled by CDBGPWRUPREQ, because those 
components have no debug logic in the system power domain. However, for components where some debug 
resources are in the system power domain controlled by CSYSPWRUPREQ, the request must be emulated for 
non-debug logic within that power domain.

CSYSPWRUPACK is the acknowledge signal for the CSYSPWRUPREQ request signal. CSYSPWRUPACK 
must be asserted for as long as CSYSPWRUPREQ is asserted. See Powerup request and acknowledgement timing 
on page 2-65.
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When CSYSPWRUPREQ is asserted by the debugger, CDBGPWRUPREQ must also be asserted.

2.4.2 Power control requirements and operation

Except where the context clearly indicates otherwise, the following description applies to both:
• System domain powerup, using the CSYSPWRUPREQ and CSYSPWRUPACK signals.
• Debug domain powerup, using the CDBGPWRUPREQ and CDBGPWRUPACK signals.

Therefore, in the description:
• CxxxPWRUPREQ refers to either CSYSPWRUPREQ or CDBGPWRUPREQ.
• CxxxPWRUPACK refers to either CSYSPWRUPACK or CDBGPWRUPACK.

The rules for the operation of powerup requests and acknowledgements are:

• The debugger must not set CTRL/STAT.{CSYSPWRUPREQ, CDBGPWRUPREQ} to {1, 0}. This 
combination of requests is UNPREDICTABLE.

• To initiate powerup, CxxxPWRUPREQ must be asserted HIGH by the Debug Port.

— If the corresponding power domain is powered down or in a low-power retention state, the power 
controller must power up and restore clocks to the domain when it detects CxxxPWRUPREQ 
asserted HIGH. When the domain is powered up, the controller must assert CxxxPWRUPACK 
HIGH.

— If the corresponding power domain is already powered up and being clocked when the power 
controller detects CxxxPWRUPREQ asserted HIGH, the controller must still respond with 
CxxxPWRUPACK HIGH. However, there is no effect on the power domain.

• Tools can only initiate an AP transfer when CDBGPWRUPREQ and CDBGPWRUPACK are asserted 
HIGH. If CDBGPWRUPREQ or CDBGPWRUPACK is LOW, any AP transfer generates an immediate 
fault response.

• The removal of power to a domain is requested by the Debug Port deasserting CxxxPWRUPREQ, that is, 
by the DP taking CxxxPWRUPREQ LOW.

The power controller deasserts CxxxPWRUPACK when it has accepted the request to power down the 
domain.

CxxxPWRUPACK being taken LOW by the power controller does not indicate that the domain has been 
powered down, it only indicates that the power controller has recognized the request to remove power.

• CxxxPWRUPACK must default to the LOW state, and only go HIGH on receipt of a CxxxPWRUPREQ 
request.

• On detecting the deassertion of CxxxPWRUPREQ, indicated by the signal going LOW, the power controller 
must gracefully power down the domain, unless removal of power from the domain would affect system 
operation. For example, the power controller might maintain power to the domain if it has other requests to 
maintain power.

• After powerdown has been requested, by the deassertion of CxxxPWRUPREQ, tools must wait until 
CxxxPWRUPACK is LOW before making a new request for powerup. CxxxPWRUPACK going LOW 
indicates that the power controller has recognized the original powerdown request.

This requirement ensures that the power control handshaking mechanism is not violated.

Figure 2-2 on page 2-65 shows the timing of the power control signals.

Note
 All AP transactions must be initiated between times T2 and T3 for CDBGPWRUPREQ and CDBGPWRUPACK, 
as shown in Figure 2-2 on page 2-65.
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Figure 2-2 Powerup request and acknowledgement timing

2.4.3 Emulation of powerdown

When CxxxPRWUPREQ from the DAP is asserted HIGH for a domain, if the power controller receives a 
conflicting request for the domain from another source it must emulate the powerdown request for the domain. This 
applies if the power controller receives, from the other source, either of:
• A powerdown request.
• A request to enter a low-power retention mode, with clocks disabled.

This requirement makes it possible to debug a system where one domain powers up and down dynamically.

During emulation of the powerdown request, the power controller carries out all of the expected power control 
handshaking, but does not actually remove power from the domain.

Emulation of powerdown is particularly relevant to application debugging, when the application developer does not 
care whether the core domain actually powers up and down because this is controlled at the OS level.

2.4.4 Emulation of power control

Where the system to which a DAP is connected does not support the ADIv5 power control model, the required 
signals must be emulated or generated from other signals. The following subsections describe possible cases:
• System without power controller support for the ADIv5 control scheme.
• System power controller does not support separate power domains on page 2-66.

System without power controller support for the ADIv5 control scheme

If the connected system can not support the ADIv5 powerup and powerdown control scheme, then 
CxxxPRWUPACK must be connected to CxxxPRWUPREQ. With these connections, whenever the DAP requests 
powerup, or removes a powerup request, it receives the appropriate acknowledge immediately. This power control 
emulation is shown in Figure 2-3.

Figure 2-3 Emulation of powerup control
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CxxxPWRUPREQ
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System power controller does not support separate power domains

If the debug power domain resides within the system power domain, CSYSPWRUPREQ and 
CDBGPWRUPREQ can independently request powerup of the debug functions in the debug and system power 
domains. Whenever CSYSPWRUPREQ is set to 1, CDBGPWRUPREQ must also be set to 1. Setting bits[30,28] 
in the CTRL/STAT register to 0b10 gives UNPREDICTABLE system behavior.

The CxxxPRWUPACK signals must be generated, so that the DAP sees the correct response to asserting a 
CxxxPRWUPREQ signal. This is shown in Figure 2-3 on page 2-65.

Figure 2-4 Signal generation for a single system and debug power domain

2.4.5 Debug reset control

The DP CTRL/STAT register provides two bits, bits[27:26], for reset control of the debug domain. The debug 
domain controlled by these signals covers the internal DAP and the connection between the DAP and the debug 
components, for example the debug bus. The two bits provide a debug reset request, CDBGRSTREQ, and a reset 
acknowledge, CDBGRSTACK. The associated signals provide a connection to a system reset controller.

The DP registers are in the always-on power domain on the external interface side of the DP. Therefore, the registers 
can be driven at any time, to generate a reset request to the system reset controller.

Figure 2-5 shows the reset request and acknowledge timing.

Figure 2-5 Reset request and acknowledge timing

Note
 The use of AMBA APB signal names in the examples does not indicate a requirement that a debug bus must be 
implemented using an AMBA APB.

In Figure 2-5:

1. At time T1, the debugger writes 1 to CTRL/STAT.CDBGRSTREQ. This initiates the reset request.

The debug domain is reset between times T1a and T1b, and the reset is complete by time T2. This operation 
resets the AP registers and other AP state.

Note
 There is no reset of the DP registers and DP state. These are only reset by a powerup reset.
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2. At time T2, the system reset controller acknowledges that the reset of the debug domain has completed. The 
CDBGRSTACK signal sets the CTRL/STAT.CDBGRSTACK bit to 1.

3. At time T3, the debugger checks the DP CTRL/STAT register and finds that the reset has completed. 
Therefore, it writes 0 to CTRL/STAT.CDBGRSTREQ. This removes the reset request signal.

4. At time T4, the system reset controller recognizes that CDBGRSTREQ is no longer asserted, and deasserts 
CDBGRSTACK.

Caution
 If CDBGRSTREQ is removed before the reset controller asserts CDBGRSTACK the behavior is UNPREDICTABLE.

The AP debug components are also reset on powerup of the debug power domain.

A debug reset request has no effect on devices that are powered down when the request is issued.

Emulation of debug reset request

If the debug reset control is not supported then:
• CTRL/STAT.CDBGRSTACK is RAZ.
• It is IMPLEMENTATION DEFINED whether CTRL/STAT.CDBGRSTREQ is read/write or RAZ/WI.

Note
 ARM recommends tying CDBGRSTACK LOW so that after a timeout the debugger can deduce that debug reset 
was not implemented.

Limitations of CDBGRSTREQ and CDBGRSTACK

Debug reset control on page 2-66 shows how these bits can drive the debug reset signal, PRESETDBGn. In an 
actual system, there might be other reset signals associated with other debug buses. For example, in an ARM 
CoreSight system, ATRESETn resets all registers in the AMBA Trace Bus domain.

Note
 It is IMPLEMENTATION DEFINED which components are reset by CDBGRSTREQ. Figure 2-5 on page 2-66 is an 
example only. It is not the case that the only components reset are those which use PRESETDBGn.

Because debug logic might be accessible by the system, an implementation might have corner cases if 
CDBGRSTREQ is set at the same time as the system is using the debug logic. For example, the reset might occur 
during a transaction, causing a system or software malfunction. 

It is IMPLEMENTATION DEFINED whether CDBGRSTREQ can be used when debug power is off.

ARM recommends that CDBGRSTREQ from an AP is ignored by the reset controller if the Device Enable signal 
to the AP, DEVICEEN, is LOW.

Caution
 System-level use of debug components must be handled with caution. ARM recommends that such system-level 
usage is not combined with a reset system that permits those debug components to be reset without the knowledge 
of the system. ARM recommends that debuggers do not use debug reset request other than when absolutely 
necessary.
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2.4.6 System reset control

The Debug Port does not provide any control bits for requesting a system reset. However, it is common for the 
physical interface to the debugger to include an system reset pin, nSRST. This section describes the recommended 
behavior for the nSRST pin.

nSRST is an active LOW pin that can be asserted and de-asserted at any point in time, regardless of the current state 
of the target system, to return the target system to a known state for booting and for starting a debug session.

During the time that nSRST is asserted:
• The target system must be held in this state.
• The debugger must be able to access the debug domain of the target system.

Limitations of system reset control

The debugger must ensure that there are no system accesses in progress through the DAP before asserting nSRST. 
When nSRST is asserted, the debugger can access the debug domain.

The effect of nSRST on the debug domain is IMPLEMENTATION DEFINED. 

For example, to safely return the target system to a known state, the debug domain might also require to be reset. 
When nSRST is asserted, the entire system must be reset, including the debug domain. However, the debug domain 
must be released from reset to allow the debugger access. Only the non-debug domain is held in reset during the 
time that nSRST is asserted.

ARM recommends that debuggers set CTRL/STAT.CDBGPWRUPREQ to zero during the time that nSRST is 
initially asserted.

Figure 2-6  Example system reset timing

1. At time T1, the debugger writes 0 to CTRL/STAT.CDBGPWRUPREQ.

2. At time T2, the system power controller acknowledges this and CTRL/STAT.CDBGPWRUPACK is cleared 
to zero.

3. At time T3, the debugger asserts nSRST. The debug domain and non-debug domain are reset at time T3a. 
The debug domain reset is complete by time T4a.

4. At time T4, the debugger writes 1 to CTRL/STAT.CDBGPWRUPREQ.

5. At time T5, the system power controller acknowledges this request and signals the debug domain reset is 
complete. CTRL/STAT.CDBGPWRUPACK is set to 1. The debugger can now program the debug domain.

6. At time T6, the debugger releases nSRST. The non-debug domain reset completes at time T6a.
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Chapter 3 
The JTAG Debug Port (JTAG-DP)

This chapter describes the implementation of the JTAG Debug Port (JTAG-DP), and in particular, the Debug Test 
Access Port (DBGTAP) State Machine (DBGTAPSM) and Scan Chains. It is only relevant to an ARM Debug 
Interface implementation that use a JTAG Debug Port. In this case, the JTAG-DP provides the external connection 
to the DAP, and all interface accesses are made using the scan chains, driven by the DBGTAPSM.

This chapter contains the following sections:
• The Debug TAP State Machine introduction on page 3-70.
• The scan chain interface on page 3-71.
• IR scan chain and IR instructions on page 3-74.
• DR scan chain and DR registers on page 3-78.
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3.1 The Debug TAP State Machine introduction
The Debug TAP State Machine (DBGTAPSM) controls the operation of a JTAG-DP. In particular, it controls the 
scan chain interface that provides the external physical interface to the DAP through the JTAG-DP. It is based 
closely on the JTAG TAP State Machine, see IEEE 1149.1-1990 IEEE Standard Test Access Port and Boundary 
Scan Architecture. This chapter describes both the DBGTAPSM and its scan chain interface.

Figure 1-2 on page 1-26 shows a DAP with a JTAG-DP, including the basic operation of the scan chain interface.
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3.2 The scan chain interface
When a Debug Access Port (DAP) is implemented with a JTAG-DP, the wire-level interface is through scan chains, 
and the DAP comprises:

• A Debug TAP State Machine (DBGTAPSM).

• An Instruction Register (IR) and associated IR scan chain, to control the behavior of the JTAG-DP and the 
currently-selected data register.

• A number of Data Registers (DRs) and associated DR scan chains, that interface to:
— The registers in the DAP.
— The debug registers in the device or debug component being accessed through the DAP.

Figure 1-2 on page 1-26 shows how the scan chains provide access to the different levels of the DAP architecture, 
and this is summarized in Figure 3-1.

Figure 3-1 Mapping of the JTAG-DP scan chains onto the logical levels of the ARM Debug Interface

3.2.1 Physical connection to the JTAG-DP

The physical connection to the JTAG-DP is closely based on the JTAG model. The connections are listed in 
Table 3-1. This table also shows the names of the equivalent signals in a JTAG implementation.

An implementation might also include a return clock signal, RTCK. However, ARM recommends that RTCK is 
not implemented on an ARM Debug Interface.
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Table 3-1 JTAG-DP signal connections

JTAG-DP signal name JTAG equivalent signal name Direction Required? Description

DBGTDI TDI Input Yes Debug Data In

DBGTDO TDO Output Yes Debug Data Out

TCK TCK Input Yes Debug Clock

DBGTMS TMS Input Yes Debug Mode Select

DBGTRSTn TRST* Input Optional Debug TAP Reset
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Figure 3-2 shows the recommended physical connection to the JTAG-DP:

Figure 3-2 JTAG-DP physical connection

3.2.2 The Debug TAP State Machine (DBGTAPSM)

Figure 3-3 shows the DBGTAPSM.

Figure 3-3 The Debug TAP State Machine (DBGTAPSM)
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Note that ARM signal names differ from those used in the IEEE diagram.
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3.2.3 Basic operation of the DBGTAPSM

The DBGTDI signal into the DAP is the start of the scan chain, and the DBGTDO signal out of the DAP is the end 
of the scan chain.

Referring to the Debug TAP State Machine (DBGTAPSM) shown in Figure 3-3 on page 3-72:

• When the DBGTAPSM goes through the Capture-IR state, 0b0001 is transferred onto the Instruction Register 
(IR) scan chain. The IR scan chain is connected between DBGTDI and DBGTDO.

• While the DBGTAPSM is in the Shift-IR state, the IR scan chain advances one bit for each rising edge of 
TCK. This means that on the first tick:
— The LSB of the IR scan chain is output on DBGTDO.
— Bit[1] of the IR scan chain is transferred to bit[0].
— Bit[2] of the IR scan chain is transferred to bit[1].
— Similarly, for every other bit n of the IR scan chain, bit[n] of the scan chain is transferred to bit[n-1].
— The value on DBGTDI is transferred to the MSB of the IR scan chain.

• When the DBGTAPSM goes through the Update-IR state, the value scanned into the IR scan chain is 
transferred into the Instruction Register.

• When the DBGTAPSM goes through the Capture-DR state, a value is transferred from one of a number of 
Data Registers (DRs) onto one of a number of DR scan chains, connected between DBGTDI and DBGTDO.

The value held in the Instruction Register determines which Data Register, and associated DR scan chain, is 
selected.

This data is then shifted while the DBGTAPSM is in the Shift-DR state, in the same manner as the IR shift 
in the Shift-IR state.

• When the DBGTAPSM goes through the Update-DR state, the value scanned into the DR scan chain is 
transferred into the selected Data Register.

• When the DBGTAPSM is in the Run-Test/Idle state, no special actions occur. Debuggers can use this as a 
true resting state.

Note
 This is a change from the behavior of previous versions of the ARM Debug Interface based on the IEEE 

JTAG standard. From ARM Debug Interface v5 there is no requirement for debuggers to gate TCK to obtain 
a true rest state.

The behavior of the IR and DR scan chains is described in more detail in IR scan chain and IR instructions on 
page 3-74 and DR scan chain and DR registers on page 3-78.

The DBGTRSTn signal only resets the DBGTAP state machine and Instruction Register. DBGTRSTn 
asynchronously takes the DBGTAPSM to the Test-Logic-Reset state. As shown in Figure 3-3 on page 3-72, the 
Test-Logic-Reset state can also be entered synchronously from any state by a sequence of five TCK cycles with 
DBGTMS HIGH. However, depending on the initial state of the DBGTAPSM, this might take the state machine 
through one of the Update states, with the resulting side effects.

Within the DAP:

• The DP registers are only reset on a powerup reset.

• The AP registers are reset on a powerup reset, and also by the Debug Reset Control described in Debug reset 
control on page 2-66.
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3.3 IR scan chain and IR instructions
This section describes the JTAG-DP Instruction Register (IR), accessed through the IR scan chain.

3.3.1 The JTAG-DP Instruction Register (IR)

Purpose Holds the current DAP Controller instruction.

Length 4 bits.

Operating mode 

When in Shift-IR state, the shift section of the IR is selected as the serial path between DBGTDI 
and DBGTDO. At the Capture-IR state, the binary value 0b0001 is loaded into this shift section. This 
is shifted out, least significant bit first, during Shift-IR. As this happens, a new instruction is shifted 
in, least significant bit first. At the Update-IR state, the value in the shift section is loaded into the 
IR and becomes the current instruction.

In the Test-Logic-Reset state, IDCODE becomes the current instruction.

Order Figure 3-4 shows the operation of the Instruction Register.

Figure 3-4 JTAG-DP Instruction Register operation

This register is mandatory in the IEEE 1149.1 standard.

0b0001
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3.3.2 Required Instruction Register (IR) instructions

The description of the JTAG-DP Instruction Register shows how a 4-bit instruction is transferred into the IR. This 
instruction determines the physical Data Register that the JTAG-DP Data Register maps onto, as described in DR 
scan chain and DR registers on page 3-78. The standard IR instructions are listed in Table 3-2, and recommended 
IMPLEMENTATION DEFINED extensions to this instruction set are described in IMPLEMENTATION DEFINED 
extensions to the IR instruction set on page 3-76.

Unused IR instruction values are reserved and select the BYPASS register.

Table 3-2 Standard IR instructions

IR instruction 
value

Data 
register

DR scan 
length Notes

0b0xxx - - IMPLEMENTATION DEFINED extensions to the IR instruction set on page 3-76

0b1000 ABORT 35 -

0b1001 - - Reserved

0b1010 DPACC 35 See DPACC and APACC, the JTAG-DP DPAccess register and AP Access 
register on page 3-81

0b1011 APACC 35

0b110x - - Reserved

0b1110 IDCODE 32 -

0b1111 BYPASS 1 -
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3.3.3 IMPLEMENTATION DEFINED extensions to the IR instruction set

The eight IR instructions 0b0000 to 0b0111 are reserved for IMPLEMENTATION DEFINED extensions to the DAP.

These instructions can be used for accessing a boundary scan register, for IEEE 1149.1 compliance. The instructions 
required to do this are listed in Table 3-3. All these instructions select the boundary scan data register.

Note
 This extension describes only the boundary scan instructions described by IEEE 1149.1-1990 and IEEE 
1149.1-2001. Other editions of IEEE 1149.1 might define additional instructions. The extension only supports up 
to eight additional instructions. 

ARM recommends that:
• Separate JTAG TAPs are used for boundary scan and debug.
• The instructions listed in Table 3-3 are not implemented.

If the IR register is set to an IR instruction value that is not implemented, or reserved, then the BYPASS register is 
selected.

If you require a boundary scan implementation, you must implement the instructions that are required by 
IEEE 1149.1. The other IR instruction values listed in Table 3-3 are reserved encodings that must be used if that 
function is implemented in the boundary scan. If implemented, these instructions must behave as required by the 
IEEE 1149.1 specification. If not implemented, they select the BYPASS register.

Note
 EXTEST instruction The original revision of the IEEE 1149.1 specification, 1149.1-1990, requires that 

instruction 0b0000 is EXTEST. However, in more recent editions this requirement is 
removed and the specification recommends that instruction 0b0000 is reserved. See the IEEE 
specification for more details.

The IEEE 1149.1 specification also defines the IDCODE and BYPASS instructions. These are included in Table 3-2 
on page 3-75.

The CLAMPZ instruction

CLAMPZ is not an IEEE 1149.1 instruction.

Table 3-3 Recommended IMPLEMENTATION DEFINED IR instructions for IEEE 1149.1-compliance

IR instruction value Instruction Required by IEEE 1149.1?

0b0000 EXTEST See note in main text.

0b0001 SAMPLE Yes

0b0010 PRELOAD Yes

0b0011 Reserved -

0b0100 INTESTa

a. Reserved, if the instruction is not implemented.

No

0b0101 CLAMPa No

0b0110 HIGHZa No

0b0111 CLAMPZa No. See The CLAMPZ instruction.
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If implemented, when the CLAMPZ instruction is selected all the 3-state outputs are placed in their inactive state, 
but the data supplied to the outputs is derived from the scan cells.

CLAMPZ can be implemented to ensure that, during production test, each output can be disabled when its value is 
0 or 1. This encoding must be used for CLAMPZ if this function is required.
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3.4 DR scan chain and DR registers
The physical DR registers are:
• The BYPASS and IDCODE registers, as defined by the IEEE 1149.1 standard.
• The DPACC and APACC Access registers, xPACC.
• An ABORT register, to abort a transaction.

There is a scan chain associated with each of these registers. As described in IR scan chain and IR instructions on 
page 3-74, the value in the IR register determines which of these scan chains is connected to the DBGTDI and 
DBGTDO signals.

3.4.1 BYPASS, the JTAG-DP Bypass register

Purpose Bypasses the device, by providing a direct path between DBGTDI and DBGTDO.

Length 1 bit.

Operating mode 

When the BYPASS instruction is the current instruction in the IR:

• In the Shift-DR state, data is transferred from DBGTDI to DBGTDO with a delay of one 
TCK cycle.

• In the Capture-DR state, a logic 0 is loaded into this register.

• Nothing happens at the Update-DR state. The shifted-in data is ignored.

Order Figure 3-5 shows the operation of the Bypass register.

Figure 3-5 JTAG-DP Bypass register operation

This register is mandatory in the IEEE 1149.1 standard.

0b0

DBGTDI DBGTDOBypass
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3.4.2 IDCODE, the JTAG TAP ID register

Purpose JTAG-DP TAP identification. The IDCODE value enables a debugger to identify the Debug Port to 
which it is connected. JTAG-DP implementations have different IDCODE values, so that a 
debugger can distinguish between them. 

Length 32 bits.

Operating mode 

When the IDCODE instruction is the current instruction in the IR, the shift section of the Device ID 
Code register is selected as the serial path between DBGTDI and DBGTDO:

• In the Capture-DR state, the 32-bit device ID code is loaded into this shift section.

• In the Shift-DR state, this data is shifted out, least significant bit first.

• Nothing happens at the Update-DR state. The shifted-in data is ignored.

Order Figure 3-6 shows the operation of the JTAG TAP ID Register.

Figure 3-6 JTAG TAP ID Register operation

In more detail, the IDCODE bit assignments are:

VERSION, bits[31:28] 

Version code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO. bits[27:12] 

Part Number for the DP TAP. This value is provided by the designer of the Debug Port TAP and 
must not be changed.

DESIGNER, bits[11:1] 

Designer ID. An 11-bit JEDEC code formed from the JEDEC JEP106 continuation code and 
identity code. The ID identifies the designer of the JTAG-DP TAP. See The JEDEC Designer ID on 
page 3-80.

The ARM default value for this field is 0x23B. Other designers must insert their own JEDEC 
assigned code here.

Bit[0] RAO.

Data[31:0]

1Version

31 28 27 12 11 1 0

Part number Manufacturer ID

DBGTDI DBGTDO

1Version

31 28 27 12 11 1 0

PARTNO
Part number defined by manufacturer 0 1 0 0 0 1 1 1 0 1 1

DESIGNER
(Value shown is the ARM default value)
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The JEDEC Designer ID

This field is bits [11:1] of the Identification Code Register. The JEDEC Designer ID is also described as the JEP106 
manufacturer identification code, and can be subdivided into two fields, as shown in Table 3-4.

JEDEC codes are assigned by the JEDEC Solid State Technology Association, see JEP106, Standard 
Manufacturer’s Identification Code.

Normally, this field identifies the designer of the ADIv5 implementation, rather than the system architect or the 
device manufacturer. However, if the DAP is used for boundary scan then the field must be set to the JEDEC 
Manufacturer ID assigned to the manufacturer of the device.

Table 3-4 JEDEC JEP106 manufacturer ID code, with ARM values

JEP106 field Bitsa

a. Field width in bits, and the corresponding bits in the IDCODE register.

ARM registered value

Continuation code 4-bits, [11:8] 0b0100 (0x4)

Identity code 7-bits, [7:1] 0b0111011 (0x3B)
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3.4.3 DPACC and APACC, the JTAG-DP DP Access register and AP Access register

The DPACC and APACC scan chains have the same format.

Purpose Initiate a DP or AP access, to access a DP or AP register. The DPACC and APACC are used for read 
and write accesses to registers.

The DPACC scan chain accesses the DP registers, other than ABORT. For addressing information, 
see:
• DP architecture version 0 (DPv0) address map on page 2-41.
• DP architecture version 1 (DPv1) address map on page 2-42.
• DP architecture version 2 (DPv2) address map on page 2-43.

The APACC scan chain accesses registers in the currently-selected AP register bank, see:
• MEM-AP register summary on page 7-146 for details of accessing MEM-AP registers.
• JTAG-AP register summary on page 8-176 for details of accessing JTAG-AP registers.

Length 35 bits.

Operating mode 

When the DPACC or APACC instruction is the current instruction in the IR, the shift section of the 
DP Access register or AP Access register is selected as the serial path between DBGTDI and 
DBGTDO:

• In the Capture-DR state, the result of the previous transaction, if any, is returned, together 
with a 3-bit ACK response. Two ACK responses are implemented, and these are summarized 
in Table 3-5.

All other ACK encodings are reserved.

• In the Shift-DR state, this data is shifted out, least significant bit first. As shown in Figure 3-7, 
the first three bits of data shifted out are ACK[2:0].
As the returned data is shifted out to DBGTDO, new data is shifted in from DBGTDI. This 
is described in The OK/FAULT response to a DPACC or APACC access on page 3-82.

• Operation in the Update-DR depends on whether the ACK[2:0] response was OK/FAULT or 
WAIT. The two cases are described in:
— Update-DR operation following an OK/FAULT response on page 3-82.
— Update-DR operation following a WAIT response on page 3-83.

Order Figure 3-7 shows the operation of the DP and AP Access Registers.

Figure 3-7 Operation of JTAG-DP DP Access register and AP Access register

Table 3-5 DPACC and APACC ACK responses

Response ACK[2:0] encoding See:

OK/FAULT 0b010 The OK/FAULT response to a DPACC or APACC access on page 3-82

WAIT 0b001 The WAIT response to a DPACC or APACC access on page 3-83

Data[2:1]

ACK[2:0]

Data[34:3]

1 0

ReadResult[31:0]

DBGTDO

3 2

A[3:2] RnWDATAIN[31:0]

Data[0]

DBGTDI

34
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The OK/FAULT response to a DPACC or APACC access

If the response indicated by ACK[2:0] is OK/FAULT, the previous transaction has completed. The response code 
does not show whether the transaction completed successfully or was faulted. You must read the CTRL/STAT 
register to find whether the transaction was successful:

• If the previous instruction in the IR was not one of DPACC, APACC or BYPASS, then the captured 
ReadResult[31:0] is UNKNOWN, and if Data[34:3] is shifted out it must be discarded.

• If the previous transaction was a read that completed successfully, then the captured ReadResult[31:0] is the 
requested register value. This result is shifted out as Data[34:3].

• If the previous transaction was a write, or a read that did not complete successfully, then the captured 
ReadResult[31:0] is UNKNOWN, and if Data[34:3] is shifted out it must be discarded.

Update-DR operation following an OK/FAULT response

The values shifted into the scan chain form a request to read or write a register:

• If the current IR instruction is DPACC then DBGTDI and DBGTDO connect to the DPACC scan chain, and 
the request is to read or write a DP register.

• If the current IR instruction is APACC then DBGTDI and DBGTDO connect to the APACC scan chain, and 
the request is to read or write an AP register.

In either case:

• If RnW is shifted in as 0, the request is to write the value in DATAIN[31:0] to the addressed register.

• If RnW is shifted in as 1, the request is to read the value of the addressed register. The value in DATAIN[31:0] 
is ignored. You must read the scan chain again to obtain the value read from the register.

The required register is addressed:

• In the case of a DPACC access to read a DP register, by the value shifted into A[3:2]. For addressing 
information, see:
— DP architecture version 0 (DPv0) address map on page 2-41.
— DP architecture version 1 (DPv1) address map on page 2-42.
— DP architecture version 2 (DPv2) address map on page 2-43.

• In the case of an APACC access to read an AP register, by the combination of:
— The value shifted into A[3:2].
— The current value of the SELECT register in the DP.

For addressing information, see:
— MEM-AP register summary on page 7-146, for accesses to MEM-AP registers.
— JTAG-AP register summary on page 8-176, for accesses to JTAG-AP registers.

Register accesses can be pipelined, because a single DPACC or APACC scan can return the result of the previous 
read operation at the same time as shifting in a request for another register access. At the end of a sequence of 
pipelined register reads, you can read the DP RDBUFF register to shift out the result of the final register read.

Reading the DP RDBUFF register is benign. That is, it has no effect on the operation of the DBGTAPSM. The 
section Target response summary on page 3-84 gives more information about how one DPACC or APACC scan 
returns the result from the previous scan.

If the current IR instruction is APACC, causing an APACC access:

• If any sticky flag is set to 1 in the DP CTRL/STAT register, the transaction is discarded. The next scan returns 
an OK/FAULT response. For more information see Sticky flags and DP error responses on page 2-34.
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• If pushed-compare or pushed-verify operations are enabled then the scanned-in value of RnW must be 0, 
otherwise behavior is UNPREDICTABLE. On Update-DR, a read request is issued, and the returned value 
compared against DATAIN[31:0]. The CTRL/STAT.STICKYCMP flag is updated based on this comparison. 
For more information see Pushed-compare and pushed-verify operations on page 2-36.

Pushed operations are enabled using the CTRL/STAT.TRNMODE field.

• The AP access does not complete until the AP signals it as completed. For example, if you access a Memory 
Access Port (MEM-AP), the AP access might cause an access to a memory system connected to the 
MEM-AP. In this case the AP access does not complete until the memory system signals to the MEM-AP that 
the memory access has completed.

The WAIT response to a DPACC or APACC access

A WAIT response indicates that the previous transaction has not completed. Normally, after receiving a WAIT 
response the host retries the DPACC or APACC access.

Note
 The previous transaction might be either a DP or an AP access. Accesses to the DP are stalled, by returning WAIT, 
until any previous AP transaction has completed.

Normally, if software detects a WAIT response, it retries the same transfer. This enables the protocol to process data 
as quickly as possible. However, if the software has retried a transfer a number of times, and has waited long enough 
for a slow interconnect and memory system to respond, it might write to the ABORT register to cancel the operation. 
This signals to the active AP that it must terminate the transfer it is currently attempting, to permit access to other 
parts of the debug system. An AP might not be able to terminate a transfer on its SoC interface. However, on 
receiving an ABORT, the AP must free its interface to the DP.

Update-DR operation following a WAIT response

No request is generated at the Update-DR state, and the shifted-in data is discarded. The captured value of 
ReadResult[31:0] is UNKNOWN.

Sticky overrun behavior on DPACC and APACC accesses

At the Capture-DR state, if the previous transaction has not completed a WAIT response is generated. When this 
happens, if the Overrun Detect flag, CTRL/STAT.ORUNDETECT is set to 1, the Sticky Overrun flag, 
CTRL/STAT.STICKYORUN, is set to 1. 

As long as the previous transaction remains not completed, subsequent scans also receive a WAIT response.

When the previous transaction has completed, any additional APACC transactions are abandoned and scans respond 
with an OK/FAULT response. However, DP registers can be accessed. In particular, the CTRL/STAT register can 
be accessed, to confirm that the Sticky Overrun flag is set to 1, and to clear the flag to 0 after gathering any required 
information about the overrun condition. See Overrun detection on page 2-34 for more information.

Minimum response times

As explained in The OK/FAULT response to a DPACC or APACC access on page 3-82, a DP or AP register access 
is initiated at the Update-DR state of one DPACC or APACC access, and the result of the access is returned at the 
Capture-DR state of the following DPACC or APACC access. However, the second access generates a WAIT 
response if the requested register access has not completed.

The DBGTAPSM clock, TCK, is asynchronous to the internal clock of the system being debugged, and the time 
required for an access to complete includes clock cycles in both domains. However, the timing between the 
Update-DR state and the Capture-DR state only includes TCK cycles. Referring to Figure 3-3 on page 3-72, there 
are two paths from the Update-DR state, where the register access is initiated, to the Capture-DR state, where the 
response is captured:
• A direct path through Select-DR-Scan.
• A path through Run-Test/Idle and Select-DR-Scan.
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If the second path is followed, the state machine can spend any number of TCK cycles spinning in the Run-Test/Idle 
state. This means it is possible to vary the number of TCK cycles between the Update-DR and Capture-DR states.

A JTAG-DP implementation might impose an IMPLEMENTATION DEFINED lower limit on the number of TCK cycles 
between the Update-DR and Capture-DR states, and always generate an immediate WAIT response if Capture-DR 
is entered before this limit has expired. Although any debugger must be able to recover successfully from any WAIT 
response, ARM recommends that debuggers must be able to adapt to any IMPLEMENTATION DEFINED limit.

In addition, when accessing AP registers, or accessing a connected device through an AP, there might be other 
variable response delays in the system. A debugger that can adapt to these delays, avoiding wasted WAIT scans, 
operates more efficiently and provides higher maximum data throughput.

Target response summary

As described in The OK/FAULT response to a DPACC or APACC access on page 3-82, a DP or AP register access 
is initiated at the Update-DR state of one DPACC or APACC access, and the result of the access is returned at the 
Capture-DR state of the following DPACC or APACC access. The target responses, at the Capture-DR state, for 
every possible DPACC and APACC access in the previous scan, are summarized in:
• Table 3-6, for cases where the previous scan was a DPACC access.
• Table 3-7 on page 3-85, for cases where the previous scan was an APACC access.

Note
 The target responses shown in Table 3-6 are independent of the operation being performed in the current DPACC 
or APACC scan. In this table, Read result is the data shifted out as Data[34:3], and ACK is decoded from the data 
shifted out as Data[2:0].

Table 3-6 JTAG-DP target response summary, when previous scana was a DPACC access

Previous scana, at Update-DR 
state Current scan, at Capture-DR state

Notes

Access A[3:2]b Sticky?c AP stated Read result ACK

X 0bXX X Busy UNKNOWN WAIT Might cause Sticky Overrun flag to be set to 1.e

R 0b00 X Not Busy UNKNOWN OK/ FAULT Returns UNKNOWN value.

0b01 CTRL/STAT Returns CTRL/STAT value.

0b10 SELECT Returns SELECT value.

0b11 0x00000000 Returns RDBUFF value, always zero.

W 0b00 X Not Busy UNKNOWN OK/ FAULT Behavior UNPREDICTABLE.

0b01 Value has been written to CTRL/STAT.

0b10 Value has been written to SELECT.

0b11 Writes to RDBUFF always ignored.

a. The previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK/FAULT. Updates made following a 
WAIT response are discarded.

b. A[3:2] in the DPACC access.
c. The Sticky? column indicates whether any Sticky flag was set to 1 in the DP CTRL/STAT register.
d. The state of the AP when the current scan reaches the Capture-DR state, or the response from the AP at that time.
e. If the Overrun Detect flag is set to 1 then this access and response sequence causes the CTRL/STAT.Sticky Overrun bit to be set to 1. 
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Host response summary

The ACK column, for the Current scan, at Capture-DR state section of Table 3-6 on page 3-84 and Table 3-7, shows 
the responses the host might receive after initiating a DPACC or APACC access. Table 3-8 indicates the normal 
action of a host in response to each of these ACKs.

Table 3-7 JTAG-DP target response summary, when previous scana was an APACC access

Previous scana, at Update-DR 
state Current scan, at Capture-DR state

Notes

Access A[3:2]b Sticky?c AP stated Read result ACK

X 0bXX X Busy UNKNOWN WAIT Might cause Sticky Overrun flag to be set to 1.e

R 0bXX No Ready See Notes OK/ FAULT See footnotef.

Error UNKNOWN Sticky Error flag is set to 1.

W 0bXX No Ready UNKNOWN OK/ FAULT See footnoteg.

Error UNKNOWN Sticky Error flag is set to 1.

X 0bXX Yes X UNKNOWN OK/ FAULT Previous transaction was discarded.

a. The previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK/FAULT. Updates made following a 
WAIT response are discarded.

b. A[3:2] in the APACC access.
c. The Sticky? column indicates whether any Sticky flag was set to 1 in the DP CTRL/STAT register.
d. The state of the AP when the current scan reaches the Capture-DR state, or the response from the AP at that time.
e. If the Overrun Detect flag is set to 1 then this access and response sequence causes the Sticky Overrun flag to be set to 1. See CTRL/STAT, 

Control/Status register on page 2-47.
f. If pushed-verify or pushed-compare is implemented and enabled, the behavior is UNPREDICTABLE. Otherwise, returns the value of the AP 

register addressed on the previous scan.
g. If pushed-verify or pushed-compare is implemented and enabled, the previous transaction performed the required pushed operation, that 

might have set the Sticky Compare flag to 1, see Pushed-compare and pushed-verify operations on page 2-36. Otherwise, the data captured 
at the previous scan has been written to the AP register requested.

Table 3-8 Summary of JTAG-DP host responses

Access 
type

ACK 
from target Suggested host action in response to ACK

Read OK/FAULT Capture read data.

Write OK/FAULT No action required.

Read or Write WAIT Repeat the same access until either an OK/FAULT ACK is received or the wait timeout is reached.
If necessary, use the AP Abort register to enable access to the AP.

Read or Write Invalid ACK Assume a target or line error has occurred and treat as a fatal error.
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3.4.4 ABORT, the JTAG-DP Abort register

Purpose Access the AP Abort register in the DP, to force an AP abort.

This is the JTAG-DP implementation of the AP ABORT register.

Length 35 bits.

Operating mode 

When the ABORT instruction is the current instruction in the IR, the serial path between DBGTDI 
and DBGTDO is connected to a 35-bit scan chain that accesses the AP Abort register.

In DPv0, the effect of writing a value other than 0x00000001 to the ABORT scan chain is 
UNPREDICTABLE. For more information, see the AP ABORT register. This means that, in DPv0, the 
debugger must scan the value 0x000000008 into this scan chain.

Order Figure 3-8 shows the operation of the ABORT scan chain.

Figure 3-8 JTAG-DP ABORT scan chain operation

0 0 0DBGTDI DBGTDO

ABORT[31:0]

RnW
A[3:2]AP Abort Register

1 0

UNKNOWN

4 3 234
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Chapter 4 
The Serial Wire Debug Port (SW-DP)

This chapter describes the implementation of the Serial Wire Debug Port (SW-DP), including the Serial Wire Debug 
interface. It is only relevant if your ARM Debug Interface implementation uses a SW-DP. In this case, the SW-DP 
provides the external connection to the Debug Interface, and all interface accesses are made using the Serial Wire 
Debug protocol summarized in this chapter.

This chapter contains the following sections:
• Introduction to the Serial Wire Debug Port on page 4-88.
• Introduction to the ARM Serial Wire Debug (SWD) protocol on page 4-89.
• Serial Wire Debug protocol operation on page 4-93.
• Serial Wire Debug interface on page 4-104.
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4.1 Introduction to the Serial Wire Debug Port
This chapter gives an architectural description of the ARM Serial Wire Debug Port (SW-DP), and in particular, the 
Serial Wire Debug interface that provides the physical connection to an ARM Debug Interface. It describes:
• The Serial Wire Debug (SWD) protocol.
• How this protocol provides access to the DP registers.
• How the SW-DP provides Access Port ACCesses (APACCs).

The ARM Serial Wire Debug interface is a synchronous serial interface. This chapter does not describe the physical 
characteristics of the SWD interface, such as signal timings.

Note
 Contact ARM if you require more detailed information about the implementation of the ARM Serial Wire Debug 
interface.
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4.2 Introduction to the ARM Serial Wire Debug (SWD) protocol
The ARM Serial Wire Debug interface uses a single bidirectional data connection and a separate clock to transfer 
data synchronously.

An operation on the wire consists of two or three phases:

Packet request 

The external host debugger issues a request to the DP. The DP is the target of the request.

Acknowledge response 

The target sends an acknowledge response to the host.

Data transfer phase 

This phase is only present when either:

• A data read or data write request is followed by a valid (OK) acknowledge response.

• The CTRL/STAT.ORUNDETECT flag is set to 1.

The data transfer is one of:
• Target to host, following a read request (RDATA).
• Host to target, following a write request (WDATA).

Note
 If the CTRL/STAT.ORUNDETECT bit is set to 1, then a data transfer phase is required on all 

responses, including WAIT and FAULT. For more information, see Sticky overrun behavior on 
page 4-98.

When the SW-DP receives a packet request from the debug host, it must respond immediately with the acknowledge 
phase. There is a turnaround period between these phases, as they are in different directions. If a data phase is 
required, this follows immediately after the acknowledge phase.

For a write request, there is a turnaround period between the acknowledge phase and the WDATA data transfer 
phase. Following the WDATA data transfer phase the host continues to drive the wire. There is no additional 
turnaround period.

For a read request, there is no turnaround period between the acknowledge phase and the data transfer phase. There 
is a turnaround period following the RDATA data transfer phase, following which the host drives the wire. 

To ensure that the transfer can be clocked through the SW-DP, after the data transfer phase the host must do one of 
the following:

• Immediately start a new SWD operation with the start bit of a new packet request.

• Continue to drive the SWD interface with idle cycles until the host starts a new SWD operation.

• If the host is driving the Serial Wire Debug clock, continue to clock the SWD interface with at least eight idle 
cycles. After this it can stop the clock.
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4.2.1 SWD protocol versions

Serial Wire Debug protocol version 1 is a point-to-point architecture, supporting connection between a single host 
and a single device. It permits connection to multiple devices by providing additional connections from the host. 
This has a number of disadvantages:

• It complicates the physical connection standard, by having variants with different numbers of connections.

• It increases the number of pins required for the connector on the device PCB. This is unacceptable where size 
is a limiting factor.

• It increases the number of pins required on a package with multiple dies inside.

• It makes it difficult to integrate multiple platforms accessed by the Serial Wire Debug protocol into the same 
chip.

Techniques to solve this require connections that are shared between multiple Serial Wire devices. This is 
detrimental to the maximum speed of operation, but in many situations this is an acceptable trade-off.

Serial Wire Debug protocol version 2 is a multi-drop architecture that:

• Enables a two-wire host connection to communicate simultaneously with multiple devices.

• Permits an effectively unlimited number of devices to be connected simultaneously, subject to electrical 
constraints.

• Is largely backwards-compatible, because provision for multi-drop support in a device does not break 
point-to-point compatibility with existing host equipment that does not support the multi-drop extensions. 
For more information, see Limits on backwards compatibility of SWD protocol version 2.

• Permits a device to power down completely, during the time that the device is not selected.

• Prevents multiple devices from driving the wire simultaneously, and continues to support the wire being 
actively driven both HIGH and LOW, maintaining a high maximum clock speed.

• Permits multi-drop connections incorporating devices that do not implement the Serial Wire Debug protocol.

Limits on backwards compatibility of SWD protocol version 2

SWD protocol version 2 requires implementation of dormant mode, which can limit its compatibility with SWD 
version 1:

• For an SWJ-DP implementation, JTAG is selected on a powerup reset. Selecting SWD bypasses dormant 
state, and therefore operation is compatible with SWD protocol version 1.

• For an SW-DP implementation of SWD protocol version 2, dormant state is selected on a powerup reset, 
meaning the start-up state differs from that with SWD protocol version 1. If SWD operation is then selected, 
operation becomes compatible with SWD protocol version 1.

4.2.2 Line turn-round

To prevent contention, a turnaround period is required when the device driving the wire changes. For the turnaround 
period, neither the host nor the target drives the wire, and the state of the wire is undefined. See also Line pull-up 
on page 4-104.

Note
 The line turn-round period can provide for pad delays when using a high sample clock frequency.

The length of the turnaround period is controlled by DLCR.TURNROUND. The default setting is a turnaround 
period of one clock cycle.
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4.2.3 Idle cycles

After completing a transaction, the host must either insert idle cycles or continue immediately with the start bit of 
a new transaction. 

The host clocks the Serial Wire Debug interface with the line LOW to insert idle cycles.

4.2.4 Bit order

All data values in SWD operations are transferred LSB first. 

For example, the OK response of 0b001 appears on the wire as 1, followed by 0, followed by 0, as shown in 
Figure 4-1 on page 4-94 and Figure 4-2 on page 4-95.

4.2.5 Parity

A simple parity check is applied to all packet request and data transfer phases. Even parity is used:

Packet requests 

The parity check is made over the APnDP, RnW and A[2:3] bits. If, of these four bits:
• The number of bits set to 1 is odd, then the parity bit is set to 1.
• The number of bits set to 1 is even, then the parity bit is set to 0.

Data transfers (WDATA and RDATA) 

The parity check is made over the 32 data bits, WDATA[0:31] or RDATA[0:31]. If, of these 32 bits:
• The number of bits set to 1 is odd, then the parity bit is set to 1.
• The number of bits set to 1 is even, then the parity bit is set to 0.

The packet request parity bit is shown in each of the diagrams in this section, from Figure 4-1 on page 4-94 to 
Figure 4-7 on page 4-99. It appears on the wire immediately after the A[2:3] bits. A parity error in the packet request 
is detected by the SW-DP, which responds with a protocol error. See Protocol error response on page 4-97.

The WDATA parity bit is shown in Figure 4-1 on page 4-94 and in Figure 4-7 on page 4-99. It appears on the wire 
immediately after the WDATA[31] bit. A parity error in the WDATA data transfer phase is detected by the SW-DP 
and, other than writes to TARGETSEL, recorded in CTRL/STAT.WDATAERR. If overrun detection is enabled, 
CTRL/STAT.STICKYORUN is set to 1. A parity error in a write to TARGETSEL deselects the target.

The RDATA parity bit is shown in Figure 4-2 on page 4-95. It appears on the wire immediately after the RDATA[31] 
bit. The debugger must check for parity errors in the RDATA data transfer phase and retry the read if required.

Note
 The ACK[0:2] bits are never included in the parity calculation. Debuggers must remember this when parity 
checking the data from a read operation, when the debugger receives a continuous stream of 36 bits, as shown in 
Figure 4-2 on page 4-95:
• Bits 0 to 2 are ACK[0:2].
• Bits 3 to 34 are RDATA[0:31].
• Bit 35 is the parity bit.

The parity check must be applied to bits 3 to 34 of this block of data, and the result compared with bit 35, the parity 
bit.
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4.2.6 Limitations of multi-drop

This section describes the configuration and auto-detection limitations of a multi-drop Serial Wire Debug system.

System configuration

Each device must be configured with a unique target ID, that includes a 4-bit instance ID, to differentiate between 
otherwise identical targets. This places a limit of 16 such targets in any system, and means that identical devices 
must be configured before they are connected together to ensure that their instance IDs do not conflict.

Auto-detection of the target

It is not possible to interrogate a multi-drop Serial Wire Debug system that includes multiple devices to establish 
which devices are connected. Because all devices are selected on coming out of a line reset, no communication with 
a device is possible without prior selection of that target using its target ID. Therefore, connection to a multi-drop 
Serial Wire Debug system that includes multiple devices requires that either:

• The host has prior knowledge of the devices in the system and is configured before target connection.

• The host attempts auto-detection by issuing a target select command for each of the devices it has been 
configured to support. While this is likely to involve a large number of target select commands, it must be 
possible to iterate through all the supported devices in a reasonable time from the viewpoint of a user of the 
debug tools.

Note
 This means that debug tools cannot connect seamlessly to targets in a multi-drop Serial Wire Debug system that they 
have never seen before. However, if the debug tools can be provided with the target ID of such targets by the user 
then the contents of the target can be auto-detected as normal.

To protect against multiple selected devices all driving the line simultaneously SWD protocol version 2 requires:

• For multi-drop SWJ-DP, the JTAG connection is selected out of powerup reset. JTAG does not drive the line. 
See Chapter 5 The Serial Wire/JTAG Debug Port (SWJ-DP). 

• For multi-drop SW-DP, the DP is in the dormant state out of powerup reset. See Dormant operation on 
page 5-113. 
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4.3 Serial Wire Debug protocol operation
This section gives an overview of the bidirectional operation of the protocol. It illustrates each of the possible 
sequences of operations on the Serial Wire Debug interface data connection.

The sequences of operations illustrated here are:
• Successful write operation (OK response) on page 4-94.
• Successful read operation (OK response) on page 4-95.
• WAIT response to read or write operation request on page 4-96.
• FAULT response to read or write operation request on page 4-96.
• Protocol error response on page 4-97.
• Sticky overrun behavior on page 4-98.
• SW-DP write buffering on page 4-99.

Key to illustrations of operations describes the terms used in the illustrations.

4.3.1 Key to illustrations of operations

The illustrations of the different possible operations use the following terms:

Start A single start bit, with value 1.

APnDP A single bit, indicating whether the Debug Port or the Access Port Access register is to be accessed. 
This bit is 0 for an DPACC access, or 1 for a APACC access.

RnW A single bit, indicating whether the access is a read or a write. This bit is 0 for an write access, or 1 
for a read access.

A[2:3] Two bits, giving the A[3:2] address field for the DP or AP register Address:

• For a DPACC access, the register being addressed depends on the A[3:2] value and, if 
A[3:2]==0b01, the value held in SELECT. DPBANKSEL. For details see:

— DP architecture version 1 (DPv1) address map on page 2-42

— DP architecture version 2 (DPv2) address map on page 2-43.

• For an APACC access, the register being addressed depends on the A[3:2] value and the value 
held in SELECT.{APSEL,APBANKSEL}. For details of the addressing see:

— MEM-AP register summary on page 7-146 for accesses to a MEM-AP register

— JTAG-AP register summary on page 8-176 for accesses to a JTAG-AP register.

Note
 The A[3:2] value is transmitted Least Significant Bit (LSB) first on the wire. This is why it appears 

as A[2:3] on the diagrams.

Parity A single parity bit for the preceding packet. See Parity on page 4-91.

Stop A single stop bit. In the synchronous SWD protocol this is always 0.

Park A single bit. The host must drive the Park bit HIGH to park the line before tristating it for the 
turnaround period. This ensures the line is read as HIGH by the target. This is required as the pull-up 
on the Serial Wire Debug interface is weak. The target reads this bit as 1.

Trn Turnaround. See Line turn-round on page 4-90.

Note
 All the examples given in this chapter show the default turnaround period of one cycle.
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ACK[0:2] A three-bit target-to-host response.

Note
 The ACK value is transmitted LSB-first on the wire. This is why it appears as ACK[0:2] on the 

diagrams.

WDATA[0:31] 

32 bits of write data, from host to target.

Note
 The WDATA value is transmitted LSB-first on the wire. This is why it appears as WDATA[0:31] on 

the diagrams.

RDATA[0:31] 

32 bits of read data, from target to host.

Note
 The RDATA value is transmitted LSB-first on the wire. This is why it appears as RDATA[0:31] on 

the diagrams.

Note
 The diagrams in this section are included to show the operation of the Serial Wire Debug protocol. They are not 
timing diagrams for the protocol. Contact ARM if you require more information about timings of the serial 
connection to the SW-DP.

4.3.2 Successful write operation (OK response)

On receiving a write package request, if the SW-DP is ready for the WDATA data transfer phase, and there is no 
error condition, it issues an OK response. This is indicated by an acknowledge response of 0b001.

This does not apply to writes to TARGETSEL. See Connection and line reset sequence on page 4-104. 

Therefore, a successful write operation consists of three phases:
1. An eight-bit write packet request, from the host to the target.
2. A three-bit OK acknowledge response, from the target to the host.
3. A 33-bit WDATA data transfer phase, from the host to the target.

By default, there are single-cycle turnaround periods between each of these phases. See Line turn-round on 
page 4-90 for more information.

A successful write operation is shown in Figure 4-1.

Figure 4-1 Serial Wire Debug successful write operation
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The host must start the write transfer immediately after receiving the OK response from the target. This behavior is 
the same whether the write is to the DP or to an AP. The OK response shown in Figure 4-1 on page 4-94 only 
indicates that the DP is ready to accept the write data. The DP writes this data after the write phase has completed, 
and therefore the response to the DP write itself is given on the next operation. However, the SW-DP can buffer AP 
writes, as described in SW-DP write buffering on page 4-99. 

There is no turnaround phase after the data phase. The host is driving the line, and can start the next operation 
immediately. 

4.3.3 Successful read operation (OK response)

On receiving a read packet request, if the SW-DP is ready for the RDATA data transfer phase, and there is no error 
condition, it issues an OK response. This is indicated by an acknowledge response of 0b001.

Therefore, a successful read operation consists of three phases:
1. An eight-bit read packet request, from the host to the target.
2. A three-bit OK acknowledge response, from the target to the host.
3. A 33-bit RDATA data transfer phase, where data is transferred from the target to the host.

By default, there are single-cycle turnaround periods between the first and second of these phases, and after the third 
phase. See Line turn-round on page 4-90 for more information. However, there is no turnaround period between the 
second and third phases, because the line is driven by the target in both of these phases.

Figure 4-2 shows a successful read operation.

Figure 4-2 Serial Wire Debug successful read operation

If the host requested a read access to the DP then the SW-DP sends the read data immediately after the 
acknowledgement response.

Read accesses to the AP are posted. This means that the result of the access is returned on the next transfer. This can 
be another AP register read, or a DP register read of RDBUFF.

To make a series of AP reads a debugger only has to insert one read of the RDBUFF register:

• On the first AP read access, the read data returned is UNKNOWN. The debugger must discard this result.

• The next AP read access, if successful, returns the result of the previous AP read.

• This can repeated for any number of AP reads. Issuing the last AP read packet request returns the last-but-one 
AP read result.

• The debugger can then read the DP RDBUFF register to obtain the last AP read result.

So that a debugger can recover from line errors, the next transaction after an AP register read can be any DP register 
read. If the next transaction is a DP register read other than a read of RDBUFF then a following AP register read or 
read of RDBUFF returns the result of the first AP register read.

If the next transaction following an AP register read is an AP register write or a DP register write then the result of 
the first AP register read is lost because any following AP register read or read of RDBUFF returns an UNKNOWN 
value.

P
ar

ity001Tr
n

S
to

p
P

ar
ity

A
P

nD
P

1

S
ta

rt

A[2:3]

P
ar

k

RDATA[0:31] Tr
n

Wire driven by: Host Target

Clock

RnW ACK[0:2]
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 4-95
ID080813 Non-Confidential



4 The Serial Wire Debug Port (SW-DP) 
4.3 Serial Wire Debug protocol operation
4.3.4 WAIT response to read or write operation request

If the SW-DP is not able to process the request from the debugger immediately it must issue a WAIT response. A 
WAIT response to a read or write packet request consists of two phases:
1. An eight-bit read or write packet request, from the host to the target.
2. A three-bit WAIT acknowledge response, from the target to the host.

By default, there are single-cycle turnaround periods between these two phases, and after the second phase. See Line 
turn-round on page 4-90 for more information.

A WAIT response to a read or write packet request is shown in Figure 4-3.

Figure 4-3 Serial Wire Debug WAIT response to a packet request

If overrun detection is enabled then CTRL/STAT.STICKYORUN is set to 1 and a data phase is required on a WAIT 
response. For more information see Sticky overrun behavior on page 4-98.

A WAIT response must not be issued to the following requests. The SW-DP must always process these requests 
immediately:

• Reads of the DPIDR register.

• Reads of the CTRL/STAT register.

• Writes to the ABORT register.

With any other request, the DP issues a WAIT response if it cannot process the request. This happens if:

• A previous AP or DP access is outstanding.

• The new request is an AP read request and the result of the previous AP read is not yet available.

Normally, when a debugger receives a WAIT response it retries the same operation. This enables it to process data 
as quickly as possible. However, if several retries have been attempted, with a wait that is long enough for a slow 
interconnection and memory system to respond, if appropriate, the debugger might write to ABORT.DAPABORT. 
This signals to the active AP that it must terminate the transfer that it is currently attempting. An AP implementation 
might be unable to terminate a transfer on its SoC interface. However, on receiving a DAP abort request the AP 
must free up the interface to the Debug Port.

Writing to the ABORT register after receiving a WAIT response enables the debugger to access other parts of the 
debug system.

4.3.5 FAULT response to read or write operation request

A SW-DP must not issue a FAULT response for:

• Reads of the DPIDR register, which is a read-only register.

• Reads of the CTRL/STAT register, which is a read/write register.

• Writes to the ABORT register, which is a write-only register.

For any other access, the SW-DP issues a FAULT response if any sticky flag is set to 1 in the CTRL/STAT register.

A FAULT response to a read or write packet request consists of two phases:
1. An eight-bit read or write packet request, from the host to the target.

R
nW Tr
n010Tr
n

S
to

p

P
ar

ity

A
P

nD
P

S
ta

rt

A[2:3]

P
ar

k

Wire driven by: Host Target

Clock

ACK[0:2]
4-96 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813



4 The Serial Wire Debug Port (SW-DP) 
4.3 Serial Wire Debug protocol operation
2. A three-bit FAULT acknowledge response, from the target to the host.

By default, there are single-cycle turnaround periods between these two phases, and after the second phase. See Line 
turn-round on page 4-90 for more information.

A FAULT response to a read or write packet request is shown in Figure 4-4.

Figure 4-4 Serial Wire Debug FAULT response to a packet request

If overrun detection is enabled then CTRL/STAT.STICKYORUN is set to 1 and a data phase is required on a FAULT 
response. For more information see Sticky overrun behavior on page 4-98.

Use of the FAULT response enables the protocol to remain synchronized. A debugger might stream a block of data 
and then check the CTRL/STAT register at the end of the block.

In a SW-DP, the sticky error flags are cleared to 0 by writing bits in the ABORT register.

4.3.6 Protocol error response

A protocol error occurs if any of the following occurs:

• The Parity bit does not match the parity of the packet request.

For more information about the parity checks in the SWD protocol see Parity on page 4-91.

• The Stop bit is not 0.

• The Park bit is not 1.

• DLCR.TURNROUND indicates an unsupported turnaround period. 

Note
 If the Parity bit in the WDATA transfer phase does not match the parity of the data, this does not cause a protocol 
error response, as the SW-DP has already given its response to the header. For more information, see Sticky flags 
and DP error responses on page 2-34.

If overrun detection is enabled then CTRL/STAT.STICKYORUN is set to 1 and the target must wait until the data 
phase of the transaction has completed before entering the protocol error state. Otherwise, it enters the protocol error 
state immediately.

When a protocol error is detected by the SW-DP, the SW-DP does not reply to the packet request and does not drive 
the line. This is illustrated in Figure 4-5 on page 4-98.

Note
  If SWD protocol version 2 is implemented, the SW-DP also does not reply to a TARGETSEL register write packet 
request.
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Figure 4-5 Serial Wire Debug protocol error after a packet request

When in protocol error state:

• If the target detects a valid read of the DP DPIDR register, it is IMPLEMENTATION DEFINED whether the target 
leaves the protocol error state, and gives an OK response. 

• If the target detects a valid packet header, other than the read of the DP DPIDR register, or the target detects 
an IMPLEMENTATION DEFINED number of additional protocol errors, it enters the lockout state. 

ARM recommends that the target enters the lockout state after one more protocol error is detected while in 
the protocol error state.

If the target cannot leave the protocol error state on a read of the DPIDR register, then the protocol error and lockout 
states are equivalent.

The target must leave the protocol error state on an line reset. 

The target only leaves the lockout state on a line reset. 

If the SW-DP implements SWD protocol version 2, it must enter the lockout state after a single protocol error 
immediately after a line reset. However, if the first packet request detected by the target following line reset is valid 
it can then revert to entering the lockout state after an IMPLEMENTATION DEFINED number of protocol errors.

Host response to protocol error

If the host does not receive an expected response from the target, it must leave the line not driven for at least the 
length of any potential data phase and then attempt a line reset. For more information, see Connection and line reset 
sequence on page 4-104.

The host can attempt reads of the DP DPIDR register before attempting a line reset, as the target might respond and 
leave the protocol error state, but ARM does not recommend this.

If the transfer that resulted in the original protocol error response was a write you can assume that no write occurred. 
If the original transfer was a read it is possible that the read was issued to an AP. Although this is unlikely, you must 
consider this possibility because reads are pipelined.

4.3.7 Sticky overrun behavior

If a SW-DP receives a transaction request when the previous transaction has not completed it returns a WAIT 
response. If overrun detection is enabled in the CTRL/STAT register, the CTRL/STAT.STICKYORUN flag is set to 
1. Subsequent transactions generate FAULT responses, because a sticky flag is set to 1. If overrun detection is 
enabled, CTRL/STAT.STICKYORUN is also set if there is a FAULT response, protocol error, or line reset. 

When overrun detection is enabled, WAIT and FAULT responses require a data phase:
• If the transaction is a read the data in the data phase is UNKNOWN. The target does not drive the line, and the 

host must not check the parity bit.
• If the transaction is a write the data phase is ignored.

Figure 4-6 on page 4-99 shows the WAIT or FAULT response to a read operation when overrun detection is enabled, 
and Figure 4-7 on page 4-99 shows the response to a write operation when overrun detection is enabled.
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Figure 4-6 SW-DP WAIT or FAULT response to a read operation when overrun detection is enabled

Figure 4-7 SW-DP WAIT or FAULT response to a write operation when overrun detection is enabled

4.3.8 SW-DP write buffering

The SW-DP can implement a write buffer, enabling it to accept write operations even when other transactions are 
outstanding. If a DP implements a write buffer it issues an OK response to a write request if it can accept the write 
into its write buffer. This means that an OK response to a write request, other than a write to the ABORT register in 
the DP, indicates only that the write has been accepted by the DP. It does not indicate that all previous transactions 
have completed.

The maximum number of outstanding transactions, and the types of transactions that might be outstanding, when a 
write is accepted, are IMPLEMENTATION DEFINED. However, the DP must be implemented so that all accesses occur 
in order. For example, if a DP only buffers writes to AP registers then, if it has any writes buffered it must stall on 
a DP register write access, to ensure that the writes are performed in order.

If a write is accepted into the write buffer but later abandoned then the CTRL/STAT.WDATAERR flag is set to 1. 
A buffered write is be abandoned if:

• A sticky flag is set to 1 by a previous transaction.

• A DP read of the IDCODE or CTRL/STAT register is made. Because the DP must not stall reads of these 
registers, it must:

— Perform the IDCODE or CTRL/STAT register access immediately.

— Discard any buffered writes, because otherwise they would be performed out-of-order.

— Set the WDATAERR flag to 1.

• A DP write of the ABORT register is made. The DP must not stall an ABORT register access.

This means that if software makes a series of AP write transactions, it might not be possible to determine which 
transaction failed from examining the ACK responses. However it might be possible to use other enquiries to find 
which write failed. For example, if when using the auto-address increment (AddrInc) feature of a Memory Access 
Port, software can read the TAR to find the address of the last successful write transaction.

The write buffer must be emptied before the following operations can be performed:

• Any AP read operation.

• Any DP operation other than a read of the IDCODE or CTRL/STAT register, or a write of the ABORT 
register.

If the write buffer is not empty, attempting these operations causes a WAIT response from the DP.
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Note
 If pushed-verify or pushed-compare is enabled, AP write transactions are converted into AP reads. These are then 
treated in the same way as other AP read operations. See Pushed-compare and pushed-verify operations on 
page 2-36 for details of these operations.

If a DP read of the IDCODE or CTRL/STAT register, or a DP write to the ABORT register, is required immediately 
after a sequence of AP writes, the software must first perform an access that the DP is able to stall. This ensures that 
the write buffer is emptied before the DP register access is performed. If this is not done, WDATAERR might be set 
to 1, and the buffered writes lost.

Note
 There is no requirement to insert an extra instruction to terminate the sequence of AP writes if the sequence of writes 
is followed by one of:
• An AP read operation.
• A write operation that can be stalled, such as a write to the SELECT register.

This means that in many cases the requirement for an additional instruction can be avoided.

4.3.9 Summary of target responses

The following subsections show the target SW-DP responses for different transaction requests:
• Target SW-DP responses for DP transaction requests.
• Target SW-DP responses for AP transaction requests on page 4-102.

Target SW-DP responses for DP transaction requests

For DP transaction requests, the register accessed is determined by:
• The value of A[3:2].
• In DPv1 and DPv2, when A[3:2] is 0b01, the value of SELECT.DPBANKSEL.

The behavior of some read transaction requests depends on the register accessed, as Table 4-1 shows.

Table 4-1 shows the target SW-DP response to all possible debugger DP read operation requests.

Table 4-2 on page 4-101 shows the target SW-DP response to all possible debugger DP write operation requests, 
assuming the WDATA parity check is good.

Table 4-1 Target response summary for DP read transaction requests

A[3:2] SELECT. 
DPBANKSEL

Sticky flag 
set to 1?

AP 
Ready?

SW-DP (target) response

ACK Action

0b00 x xa xa OK Respond with register value.

0b01 0x0 xa xa OK Respond with register value.

Not 0x0 No Yes OK Respond with register value.

No No WAIT No data phase, unless overrun detection is enabledb.

Yes x FAULT No data phase, unless overrun detection is enabledb.
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Fault conditions that are not shown in these tables are described in Fault conditions not included in the target 
response tables on page 4-103.

0b10 x No Yes OK Respond by resending the last read value sent to the host. This 
value is the result of one of:
• the most recent AP read
• the most recent DP RDBUFF read.

No No WAIT No data phase, unless overrun detection is enabledb.

Yes x FAULT No data phase, unless overrun detection is enabledb.

0b11 x No Yes OK Respond with the value from the previous AP read, and set 
CTRL/STAT.READOK bit to 1.

No No WAIT No data phase, unless overrun detection is enabledb. Set 
CTRL/STAT.READOK bit to 0.

Yes x FAULT No data phase, unless overrun detection is enabledb. Set 
CTRL/STAT.READOK bit to 0.

a. The SW-DP must always give an OK response to a read of the IDCODE or CTRL/STAT register.
b. See Sticky overrun behavior on page 4-98 for details of data phase when overrun detection is enabled.

Table 4-2 Target response summary for DP write transaction requests

A[3:2] Protocol
version

Sticky flag 
set to 1? AP Ready?

SW-DP (target) response

ACK Action

0b00 x x x OK Write WDATA value to ABORT register.

0b01 or 

0b10

x No Yesa OK Write WDATA value to the selected DP register.

No WAIT No data phase, unless overrun detection is enabledb.

Yes x FAULT No data phase, unless overrun detection is enabledb.

0b11 v1 No Yesa OK Register is reserved, SBZ. Write is ignored.

No WAIT No data phase, unless overrun detection is enabledb.

Yes x FAULT No data phase, unless overrun detection is enabledb.

v2 x x None Write WDATA to TARGETSEL registerc. 

a. Writes might be accepted when other transactions are still outstanding, These writes might be abandoned subsequently. See SW-DP write 
buffering on page 4-99 for more information.

b. See Sticky overrun behavior on page 4-98 for details of data phase when overrun detection is enabled.
c. Target gives no response. See Connection and line reset sequence on page 4-104.

Table 4-1 Target response summary for DP read transaction requests (continued)

A[3:2] SELECT. 
DPBANKSEL

Sticky flag 
set to 1?

AP 
Ready?

SW-DP (target) response

ACK Action
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Target SW-DP responses for AP transaction requests

For AP transaction requests, the register accessed is determined by the value of A[3:2] combined with the values of 
SELECT.{APSEL,APBANKSEL}. For more information, see Using the Access Port to access debug resources on 
page 1-27.

Table 4-3 summarizes the target SW-DP response to all possible debugger AP read operation requests.

Table 4-4 summarizes the target SW-DP response to all possible debugger AP write operation requests, assuming 
the WDATA parity check is good.

Fault conditions that are not shown in these tables are described in Fault conditions not included in the target 
response tables on page 4-103.

Table 4-3 Target response summary for AP read transaction requests

A[3:2] Sticky flag 
set to 1?

AP 
Ready?

SW-DP (target) response

ACK Action

0bxx No Yes OK Normallya, return value from previous AP readb and set CTRL/STAT.READOK bit 
to 1. Initiate AP read of addressed register.

No WAIT No data phase, unless overrun detection is enabledc. Set CTRL/STAT.READOK bit 
to 0.

Yes x FAULT No data phase, unless overrun detection is enabledc. Set CTRL/STAT.READOK bit 
to 0.

a. If pushed-verify or pushed-compare is enabled, behavior is UNPREDICTABLE.
b. On the first of a sequence of AP reads, the value returned in the data phase is UNKNOWN.
c. See Sticky overrun behavior on page 4-98 for details of data phase when overrun detection is enabled.

Table 4-4 Target response summary for AP write transaction requests

A[3:2] Sticky flag set to 1? AP Ready?
SW-DP (target) response

ACK Action

0bxx No Yesa OK Normallyb, write WDATA value to the indicated AP register.

No WAIT No data phase, unless overrun detection is enabledc.

Yes x FAULT No data phase, unless overrun detection is enabledc.

a. Writes might be accepted when other transactions are still outstanding, These writes might be abandoned subsequently. See SW-DP write 
buffering on page 4-99 for more information.

b. If pushed-verify or pushed-compare is enabled, the write is converted to a read of the addressed AP register, and the value returned by this 
read is compared with the supplied WDATA value, see Pushed-compare and pushed-verify operations on page 2-36 for more information.

c. See Sticky overrun behavior on page 4-98 for details of data phase when overrun detection is enabled.
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Fault conditions not included in the target response tables

There are two fault conditions that are not included in possible operation requests listed in Table 4-1 on page 4-100 
to Table 4-4 on page 4-102:

Protocol error 

If there is a protocol error then the target does not respond to the request at all. This means that when 
the host expects an ACK response, it finds that the line is not driven. See Protocol error response 
on page 4-97. 

WDATA fails parity check (write operations only) 

The ACK response of the DP is sent before the parity check is performed, and is shown in Table 4-2 
on page 4-101. When the parity check is performed and fails, the CTRL/STAT.WDATAERR flag is 
set to 1.

4.3.10 Summary of host responses

Every access by a debugger to a SW-DP starts with an operation request. Summary of target responses on 
page 4-100 listed all possible requests from a debugger, and summarized how the SW-DP responds to each request.

Whenever a debugger issues an operation request to a SW-DP, it expects to receive a 3-bit acknowledgement, as 
listed in the ACK columns of Table 4-1 on page 4-100 to Table 4-4 on page 4-102. Table 4-5 summarizes how the 
debugger must respond to this acknowledgement, for all possible cases.

Note
 For SWD protocol version 2, this table does not apply to writes to TARGETSEL. See Connection and line reset 
sequence.

Table 4-5 Summary of host (debugger) responses to the SW-DP acknowledge

Operation 
requested

ACK 
received

Host response

Data phase Additional action

R OK Capture RDATA from target and 
check for valid paritya and 
protocol.

Might have to repeat original read request or use the RESEND 
register if a parity or protocol fault occurs and are unable to flag data 
as invalidb.

Invalid 
ACK

Back off because of possible 
data phase.

Can check CTRL/STAT register to see if the response sent was OK.

W OK Send WDATA. Validity of this transfer is confirmed on next access.

Invalid 
ACK

Back off to ensure that target 
does not capture next header as 
WDATA.

Repeat the write access. A FAULT response is possible if the first 
response was sent as OK but not recognized as valid by the debugger. 
The subsequent write is not affected by the first, misread, response.

x WAIT No data phase, unless overrun 
detection is enabledc.

Normally, repeat the original operation request. See WAIT response to 
read or write operation request on page 4-96 for more information.

FAULT No data phase, unless overrun 
detection is enabledc.

Can send new headers, but only an access to DP register addresses 
0b0X gives a valid response.

No ACK Back off because of possible 
data phase.

Can attempt IDCODE register read. Otherwise reset connection and 
retrain. See Protocol error response on page 4-97.

a. See Parity on page 4-91 for details of the parity checking.
b. The host debugger might support corrupted reads, or it might have to re-try the transfer.
c. If overrun detection is enabled, a data phase is required. See Sticky overrun behavior on page 4-98 for a description of the behavior on read 

and write operations.
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4.4 Serial Wire Debug interface
The Serial Wire Debug protocol operates with a synchronous serial interface. This uses a single bidirectional data 
signal, and a clock signal.

This section gives an overview of the physical Serial Wire Debug interface.

4.4.1 Line interface

The Serial Wire Debug interface uses a single bidirectional data pin, SWDIO. That is, the same signal is used for 
both host and target sourced signals. 

The Serial Wire Debug interface is synchronous, and requires a clock pin, SWCLK.

The clock can be sourced from the target and exported, or provided by the host. This clock is then used by the host 
as a reference for generation and sampling of data so that the target is not required to perform any over-sampling.

Both the target and host are capable of driving the bus HIGH and LOW or tristating it. The ports must be able to 
tolerate short periods of contention that might occur because of a loss of synchronization.

The clock can be asynchronous to any system clock, including the debug logic clock. The Serial Wire Debug 
interface clock can be stopped when the debug port is idle, see Introduction to the ARM Serial Wire Debug (SWD) 
protocol on page 4-89.

4.4.2 Line pull-up

So that the line is in a known state when neither host nor target is driving the line, a 100KΩ pull-up is required at 
the target, but this can only be relied on to maintain the state of the wire. If the wire is driven LOW and released, 
the pull-up resistor eventually returns the line to the HIGH state, but this takes many clock periods.

The pull-up is intended to prevent false detection of signals when no host is connected. This means it must be of a 
suitably high value to reduce current consumption from the target when the host actively pulls down the line.

Note
 A small current drains from the target whenever the line is driven LOW. If the interface is left connected for 
extended periods when the target has to use a low-power mode, the line must be held HIGH, or reset, by the host 
until the interface is activated.

4.4.3 Connection and line reset sequence

A debugger must use a line reset sequence to ensure that hot-plugging the serial connection does not result in 
unintentional transfers. The line reset sequence ensures that the SW-DP is synchronized correctly to the header that 
signals a connection.

The SWD interface does not include a reset signal. A line reset is achieved by holding the data signal HIGH for at 
least 50 clock cycles, followed by at least two idle cycles. Figure 4-8 shows the interface timing for a line reset 
followed by a DP DPIDR register read.

Figure 4-8 Line reset sequence followed by a DP DPIDR register read
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A line reset is required when first connecting to the target. A line reset might be required following a protocol error. 
See Protocol error response on page 4-97. 

A line reset resets DLCR.

Note
 Other SW-DP registers are reset only by a powerup reset.

When waiting for a packet header, if the target detects a sequence of 50 clock cycles with the data signal held HIGH, 
followed by at least two idle cycles, it must enter the reset state. It is IMPLEMENTATION DEFINED whether a sequence 
of 50 clock cycles with the data signal held HIGH, detected at any other time, causes the interface to enter the reset 
state.

The only valid transactions in reset state are:
• A read of the DPIDR register. This takes the connection out of reset state.
• One of the switching sequences defined by SWD and JTAG select mechanism on page 5-110, if implemented.
• A write to the TARGETSEL register, if SWD protocol version 2 is implemented. If this selects the target, the 

interface remains in reset state.

Note
 Only writes to TARGETSEL immediately after entry to the reset state can select or deselect the target. See 

Target selection protocol, SWD protocol version 2.

Any of these sequences can be aborted by a second line reset. The behavior of the target is UNPREDICTABLE if any 
other transaction is made in reset state.

If the host does not see an expected response when reading the DPIDR register, it must retry the reset sequence. This 
is because the target might have been in a state where, for example, it treated the initial line reset as a data phase of 
a transaction and so did not detect it as a valid line reset. If this is the case, the target detects the line reset as a 
protocol error and requires a second line reset to respond correctly. 

If overrun detection is enabled then the line reset sets CTRL/STAT.STICKYORUN to 1.

4.4.4 Target selection protocol, SWD protocol version 2

To select a new target a host must:

1. Perform a line reset. See Figure 4-9. 

2. Write to DP register 0xC, TARGETSEL, where the data indicates the selected target. The target response must 
be ignored. See Figure 4-9. 

3. Read from the DP register 0x0, DPIDR, to verify that the target has been successfully selected.

Figure 4-9 Line reset sequence followed by a DP TARGETSEL write

A write to the TARGETSEL register must always be followed by a read of the DPIDR register or a line reset. If the 
response to the DPIDR read is incorrect, or there is no response, the host must start the sequence again.
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The target is selected on receiving a line reset sequence.

Following receipt of a line reset sequence, if the target then receives a write to TARGETSEL that does not select 
the same target, the target is deselected.

When deselected, the target ignores all accesses and must not drive the line. Only a write to TARGETSEL 
immediately following a line reset sequence can select or deselect the target. Writes to TARGETSEL at any other 
time are UNPREDICTABLE.

If the target encounters a protocol error, it becomes deselected. Specifically, it does not respond to a read of the 
DPIDR register.

For more information, including the required behavior of the target during the response phase of the write to the 
TARGETSEL register, see Protocol errors, SW-DP on page 2-36.

A parity error in the data phase of a write to the TARGETSEL register does not set the CTRL/STAT.WDATAERR 
bit to 1. A parity error in the data phase of a write to the TARGETSEL register is treated as a protocol error.

Accesses to the TARGETSEL register are not affected by the state of the CTRL/STAT.{WDATAERR, 
STICKYERR, STICKYCMP, STICKYORUN} bits.

Implementations of Serial Wire Debug protocol version 2 must also support dormant operation. See Dormant 
operation on page 5-113.
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Chapter 5 
The Serial Wire/JTAG Debug Port (SWJ-DP)

This appendix describes multiple protocol interoperability as implemented in the Serial Wire/JTAG Debug Port 
(SWJ-DP) CoreSight component. It contains the following sections:
• Serial Wire/JTAG Debug Port (SWJ-DP) on page 5-108.
• SWD and JTAG select mechanism on page 5-110.
• Dormant operation on page 5-113.
• Restriction on switching on page 5-120.
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5.1 Serial Wire/JTAG Debug Port (SWJ-DP)
The SWJ-DP interface provides a mechanism to select between Serial Wire Debug (SWD) and JTAG Data Link 
protocols. This enables the JTAG-DP and SW-DP to share pins.

SWJ-DP is a combined JTAG-DP and SW-DP that enables a debug probe to connect to the target using either the 
SWD protocol or JTAG. To make efficient use of package pins, the SWD interface shares, or overlays, the JTAG 
pins, and a mechanism is provided to switch between JTAG-DP and SW-DP, depending on which debug probe type 
is connected. The SWJ-DP behaves like a JTAG-DP device if normal JTAG sequences are sent to it.

5.1.1 SWJ-DP structure

The SWJ-DP logically consists of a wrapper around the JTAG-DP and SW-DP. Its function is to select JTAG or 
SWD as the Data Link protocol and enable either JTAG-DP or SW-DP as the interface to the DAP.

Figure 5-1 shows the wrapped SW-DP and JTAG-DP.

Figure 5-1 SWJ-DP conceptual model

There is no requirement to implement separate SW-DP and JTAG-DP blocks within the SWJ-DP wrapper.

The number, type and location of APs accessed by the SWJ-DP must be the same, and must access the same debug 
resources, but there is no requirement to implement these as shared APs.

This means that tools must not rely on the state of either DP, or any AP accessed through the DP, persisting when 
the other DP is selected. On switching DPs, the debugger must re-initialize the DAP, including setting the 
CTRL/STAT.{CDBGPWRUPREQ, CSYSPWRUPREQ} bits correctly.

The JTAG-DP and SW-DP programmers’ models do not have to implement the same Debug Port architecture 
version. See Chapter 2 The Debug Port (DP). 

Note
 If the JTAG protocol is never used, a pull-down on TDI is required at the target.

5.1.2 SWJ-DP operation

SWJ-DP enables a SoC to be designed for used in systems that require either a JTAG interface or a Serial Wire 
Debug interface. There is however a trade-off between the number of pins used and compatibility with existing 
hardware and test equipment.

There are several scenarios where the use of a JTAG debug interface must be maintained, such as:

• To enable inclusion in an existing scan chain, generally on-chip TAPs used for test or other purposes.

• To enable the device to be cascaded with legacy devices which use JTAG for debug, although this can also 
be supported using a JTAG Access Port (JTAG-AP).

• To enable use of existing debug hardware with the corresponding test TAPs, for example, in Automatic Test 
Equipment (ATE).
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A SoC fitted with SWJ-DP support can be connected to legacy JTAG equipment without any requirement to make 
changes. If a SWD tool is available, then only two pins are required, instead of the usual four used for JTAG. Two 
pins are therefore released for alternative functions.

These two released pins can only be used when there is no conflict with their use in JTAG operation. In addition, to 
support use of SWJ-DP in a scan chain with other JTAG devices, the default state after reset must be to use these 
released pins for their JTAG operation. However, if the direction of the alternative function is compatible with being 
driven by a JTAG debug device, the transition of the JTAG TAP to the Shift-DR or Shift-IR state can transition these 
pins from their alternative function to JTAG operation.

The alternate function cannot be used while the SoC is being used in JTAG operation.

The switching scheme is arranged so that, provided there is no conflict on the TDI and TDO pins, a JTAG debugger 
is able to connect by sending a specific sequence.

The connection sequence used for SWD is safe when applied to the JTAG interface, even when hot-plugged, 
enabling the debugger to continually retry its access sequence. A sequence with TMS HIGH ensures that all parts 
of the SWJ-DP are in a known reset state. The pattern that selects SWD has no effect on JTAG devices. SWJ-DP is 
compatible with a free-running TCK, or a gated clock, that is supplied by the external tools.

5.1.3 SWD and JTAG interface

The external JTAG interface has four mandatory pins:
TCK Test Clock.
TMS Test Mode State.
TDI Test Data In.
TDO Test Data Out.

There is also an optional reset pin, nTRST, which, when available, can reset the TAP controller's state machine. 
Debug ports also require a separate system reset signal that is asserted, for example, at powerup.

The SWD interface has two pins:
SWDIO Data In/Out.
SWCLK Clock. The clock can be either an input or an output.

To enable sharing of the connector for either JTAG or SWD, connections must be made external to the SWJ-DP 
block, see SWJ-DP conceptual model on page 5-108. The combined SWJ-DP includes two shared pins:

SWDIOTMS Shared for SWDIO and TMS data signals.

SWCLKTCK Shared for SWCLK and TCK clock signals.

In addition, TMS must be a bidirectional pin to support the bidirectional SWDIO pin for Serial Wire Debug 
protocol.

Note
 • When the Serial Wire Debug protocol is being used, the JTAG pins TDI, TDO, and nTRST are expected to 

be reused.

• An SWJ-DP can be implemented in a package where the JTAG pins TDI, TDO, and nTRST are not 
connected because an SWJ-DP is designed to allow selection of SWD protocol without using these JTAG 
pins.
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5.2 SWD and JTAG select mechanism
SWJ-DP enables either a SWD or JTAG protocol to be used on the debug port. To do this, it implements a watcher 
circuit that detects a specific 16-bit select sequence on SWDIOTMS:
• A 16-bit sequence to switch from JTAG to SWD operation.
• A 16-bit sequence is to switch from SWD to JTAG.

ARM deprecates use of these sequences on devices where the dormant state of operation is implemented, and 
recommends using a transition through dormant state instead. For more information, see Dormant operation on 
page 5-113.

SWJ-DP defaults to JTAG operation on powerup reset and therefore the JTAG protocol can be used from reset 
without sending a select sequence.

Switching from one protocol to the other can only occur when the selected interface is in its reset state. The JTAG 
TAP state machine must be in its Test-Logic-Reset (TLR) state and the SWD interface must be in line-reset. The 
powerup reset state for a JTAG TAP state machine is the Test-Logic-Reset state.

Having detected a switching sequence, SWJ-DP does not detect more sequences until after a reset condition. If 
JTAG is selected, the JTAG TAP state machine being in the Test-Logic-Reset state is the reset condition. If SWD is 
selected, a line reset is the reset condition.

Figure 5-2 is a simplified state diagram that shows how SWJ-DP transitions between selected, detecting, and 
selection states.

Figure 5-2 SWD and JTAG select state diagram

Note
 In Figure 5-2:
• The JTAG-to-SWD sequence terminates in the SW-Sel reset state.
• The SWD-to-JTAG sequence terminates in the JTAG-Sel TLR state.

The recommended sequences end with a reset sequence for the selected state, to ensure the target is in the relevant 
reset state.
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5.2.1 Switching from JTAG to SWD operation

To switch SWJ-DP from JTAG to SWD operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in 
its reset state. The JTAG interface only detects the 16-bit JTAG-to-SWD sequence starting from the 
Test-Logic-Reset state.

2. Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS.

3. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already 
in SWD operation before sending the select sequence, the SWD interface enters line reset state.

The 16-bit JTAG-to-SWD select sequence is 0b0111 1001 1110 0111, most-significant-bit (MSB) first. This can be 
represented as one of the following:
• 0x79E7, transmitted MSB first.
• 0xE79E, transmitted least-significant-bit (LSB) first.

Figure 5-3 shows the interface timing.

Figure 5-3 JTAG-to-SWD sequence timing

This sequence has been chosen to ensure that the SWJ-DP switches to using SWD whether it was previously 
expecting JTAG or SWD. As long as the 50 cycles with SWDIOTMS HIGH sequence is sent first, the 
JTAG-to-SWD select sequence does not affect SW-DP, or the SWD and JTAG protocols used in the SWJ-DP, and 
any other TAP controllers that might be connected to SWDIOTMS.

On selecting SWD operation, the SWD interface is in a reset state. See Connection and line reset sequence on 
page 4-104.

5.2.2 Switching from SWD to JTAG operation

To switch SWJ-DP from SWD to JTAG operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in 
its reset state. The SWD interface only detects the 16-bit SWD-to-JTAG sequence when it is in the reset state.

2. Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS.

3. Send at least 5 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already in 
JTAG operation before sending the select sequence, the JTAG TAP enters the Test-Logic-Reset state.

The 16-bit SWD-to-JTAG select sequence is 0b0011 1100 1110 0111, MSB first. This can be represented as either of 
the following:
• 0x3CE7, transmitted MSB first
• 0xE73C, transmitted LSB first.

Figure 5-4 on page 5-112 shows the SWD-to-JTAG sequence timing.
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Figure 5-4 SWD-to-JTAG sequence timing

This sequence has been chosen to ensure that the SWJ-DP switches to using JTAG whether it was previously 
expecting JTAG or SWD. If the SWDIOTMS HIGH sequence is sent first, the SWD-to-JTAG select sequence does 
not affect SW-DP, or the SWD and JTAG protocols used in the SWJ-DP, and any other TAP controllers that might 
be connected to SWDIOTMS.

Figure 5-4 shows that the SWD-to-JTAG sequence begins with two SWDIOTMS LOW cycles after the line reset. 
No additional SWDIOTMS LOW cycles are allowed.
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5.3 Dormant operation
An alternative to the selection mechanism for switching between JTAG and SWD operation described in SWD and 
JTAG select mechanism on page 5-110 is the dormant state of operation.

To switch between JTAG and SWD operation, a debugger must first place the target into dormant state, and then 
transition to the required operating state.

Using dormant state allows the target to be placed into a quiescent mode, allowing devices to inter-operate with 
other devices implementing other protocols. Those other protocols must also implement a quiescent state, with a 
mechanism for entering and leaving that state that is compatible, but not necessarily compliant, with the SWJ-DP 
and SW-DP protocols.

This third state of operation is required by SWJ-DP and SW-DP implementations that implement Serial Wire Debug 
protocol version 2. Serial Wire Debug protocol version 2 is described in Chapter 4 The Serial Wire Debug Port 
(SW-DP). Otherwise, support for dormant state is IMPLEMENTATION DEFINED. In dormant state the target must 
ignore any stimulus, with any timing, other than a defined Selection Alert sequence.

The Selection Alert sequence must be followed by a protocol-specific Activation code.

Selection of dormant state is possible when either JTAG or SWD operation is selected. Figure 5-5 extends the state 
diagram of Figure 5-2 on page 5-110 to include selection of dormant state, for an SWJ-DP implementation.

Figure 5-5 SWJ-DP selection of JTAG, SWD, and dormant states

Note
 • Following the DS-to-JTAG activation code, the JTAG TAP is in either the Test-Logic-Reset state or 

Run-Test/Idle state, and therefore this state machine is in either the JTAG-Sel TLR state or the JTAG-Sel 
selected state. Normally, the TAP state returned to is the TAP state left from. However, it is also possible to 
reset the JTAG TAP state machine when JTAG is not the selected protocol.

ARM recommends the DS-to-JTAG sequence is followed by a single clock with SWDIOTMS LOW to 
ensure the TAP is in the Run-Test/Idle state.

• The DS-to-SWD sequence is shown terminating in the SW-Sel reset state. The recommended sequence ends 
with a line reset to ensure the target is in the reset state.
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5.3.1 Use of Dormant state other than in SWJ-DP

A Serial Wire Debug device that does not implement JTAG can nevertheless implement dormant state, and 
inter-operate with SWJ-DP and other JTAG devices that also implement dormant state. In this case:
• The operating mode selection state machine is simplified.
• The initial state, entered on a powerup reset, is dormant state.

Figure 5-6 shows the state diagram for an SW-DP that implements protocol version 2, meaning it supports dormant 
state.

Figure 5-6 SW-DP selection of SWD, and dormant states

This means multi-drop SWJ-DP, SW-DP and JTAG TAPs can share a physical connection to a host, as shown in 
Figure 5-7. These different devices can be in different physical packages, or on different dies in a single package, 
or on a single die.

Figure 5-7 Multiple JTAG, SW, SWJ (multi-drop) and other protocol devices on shared connection
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5.3.2 JTAG to Dormant Switching

To switch from JTAG to dormant a debugger must:

1. Send at least 5 SWCLKTCK cycles with SWDIOTMS HIGH. This places the JTAG TAP state machine 
into the Test-Logic-Reset state, and selects the IDCODE instruction.

2. Send the recommended 31-bit JTAG-to-DS select sequence on SWDIOTMS.

The recommended 31-bit JTAG-to-DS select sequence is 0b010_1110_1110_1110_1110_1110_1110_0110, MSB first. 
This can be represented as either:

• 0x2EEEEEE6 transmitted MSB first, that is, starting from bit 30.

• 0x33BBBBBA transmitted LSB first.

Figure 5-8 Recommended JTAG-to-DS sequence timing

Requirements for implementations

The JTAG-to-DS sequence is the shortest sequence that switches from JTAG-to-DS. For compatibility with other 
standards, all JTAG devices that implement dormant state must recognize other sequences as valid JTAG-to-DS 
select sequences.

The full sequence is defined around the concept of a zero-bit-DR-scan (ZBS or ZBS scan) which is in turn defined 
by transitions of the JTAG TAP state machine. A ZBS is defined as any JTAG TAP state machine sequence that 
starts at Capture-DR and ends in Update-DR without passing through Shift-DR.

Examples of a ZBS are:
• Capture-DR → Exit1-DR → Update-DR
• Capture-DR → Exit1-DR → Pause-DR → … → Pause-DR → Exit2-DR → Update-DR

The sequence also uses the ZBS count, which is defined as follows:

• The ZBS count is unlocked and reset to zero if the TAP state machine enters either the Select-IR-Scan or 
Test-Logic-Reset state. This includes asynchronously entering Test-Logic-Reset following assertion of 
nTRST. At reset, the ZBS count is unlocked and reset to zero.

• On entering Update-DR at the end of a ZBS scan, if the ZBS count is unlocked and less than seven, it is 
incremented by one.

• The counter does not increment past seven. On entering Update-DR at the end of a ZBS scan, if the ZBS 
count is unlocked and equal to seven, it is not incremented. The count does not wrap to zero.

• The ZBS count is locked if the TAP state machine enters the Shift-DR state and the ZBS count is not zero.

The JTAG-to-DS sequence is defined as any sequence of TAP state machine transitions that terminates in the 
Run-Test/Idle state with a locked ZBS count of six. On entering Run-Test/Idle, the target is placed into dormant state 
(DS).

The behavior of the target on entering Run-Test/Idle with other locked ZBS counts is IMPLEMENTATION DEFINED.

At least
5 clocks with
SWDIOTMS

HIGH

0 1 0 1 1 1 0 ... 1 1 0 0 1 1 0

JTAG-to-DS sequence

SWCLKTCK

SWDIOTMS
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 5-115
ID080813 Non-Confidential



5 The Serial Wire/JTAG Debug Port (SWJ-DP) 
5.3 Dormant operation
Although the recommended JTAG-to-DS sequence starts by placing the JTAG TAP state machine in the 
Test-Logic-Reset state, this is not a requirement for recognizing the JTAG-to-DS sequence. Tools must, however, 
ensure the Instruction Register (IR) is loaded with either the BYPASS or IDCODE instruction before placing the 
target into the dormant state. If the IR is not loaded with either of these instructions when the target is put into 
dormant state, the behavior is unpredictable.

The pseudocode function EnterDormantState describes the function of the JTAG-to-DS sequence detector. It is 
notionally called on every TAP state machine transition. The function’s argument is the state being entered, and the 
function’s result is a Boolean indicating whether dormant state must be entered.

For details of the pseudocode language, see Appendix C Pseudocode Definition.

enumeration TAPState {
    TestLogicReset, RunTestIdle,
    SelectDRScan, CaptureDR, ShiftDR, Exit1DR, PauseDR, Exit2DR, UpdateDR,
    SelectIRScan, CaptureIR, ShiftIR, Exit1IR, PauseIR, Exit2IR, UpdateIR};

boolean shiftDRflag = FALSE;
integer ZBScount = 0;
boolean ZBSlocked = FALSE;

// EnterDormantState()
// ===================

boolean EnterDormantState(TAPState state)
    case state of
        when CaptureDR
            shiftDRflag = FALSE;
        when ShiftDR
            shiftDRflag = TRUE;

            if ZBScount != 0 then ZBSlocked = TRUE;
        when UpdateDR
            if !ZBSlocked && !shiftDRflag && ZBScount < 7 then
                ZBScount = ZBScount + 1;
        when SelectIRScan, TestLogicReset
            ZBScount = 0;  ZBSlocked = FALSE;
        return state == RunTestIdle && ZBSlocked && ZBScount == 6;

Note
 If the JTAG-to-DS sequence is terminated by a entering the Test-Logic-Reset state, an SWJ-DP can immediately 
detect a JTAG-to-SWD sequence.

5.3.3 SWD to Dormant switching

To switch from SWD to dormant:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures the SWD interface is in the 
reset state. The target only detects the SWD-to-DS sequence when it is in the reset state.

2. Send the 16-bit SWD-to-DS select sequence on SWDIOTMS.

The 16-bit SWD-to-DS select sequence is 0b0011_1101_1100_0111, MSB first. This can be represented as either:
• 0x3DC7 transmitted MSB first.
• 0xE3BC transmitted LSB first.
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Figure 5-9 SWD-to-DS sequence timing

Figure 5-9 shows that the SWD-to-DS sequence begins with two SWDIOTMS LOW cycles after the line reset. No 
additional SWDIOTMS LOW cycles are allowed.

5.3.4 Switching out of Dormant state

The sequence to switch out of dormant state is considerably longer to avoid it being generated accidentally by 
whichever alternative protocol is in use. The sequence is long enough that it is statistically highly improbable that 
it is generated any other way.

To switch out of dormant state:

1. Send at least 8 SWCLKTCK cycles with SWDIOTMS HIGH. This is to ensure the target is not in the 
middle of detecting a Selection Alert sequence. The target is permitted to detect the Selection Alert sequence 
even if this 8-cycle sequence is not present.

2. Send the 128-bit Selection Alert sequence on SWDIOTMS.

3. Send 4 SWCLKTCK cycles with SWDIOTMS LOW. The target must ignore the value on SWDIOTMS 
during these cycles.

4. Send the required activation code sequence on SWDIOTMS.

5. Send a sequence to place the target into a known state

• If selecting JTAG, the target is in either the Run/Test Idle or Test-Logic-Reset states, see the Note that 
follows Figure 5-5 on page 5-113 for more information. ARM recommends that the debugger sends 
one SWCLKTCK cycle with SWDIOTMS LOW. This ensures that the TAP state machine is in the 
Run-Test/Idle state. Alternatively, send at least five SWCLKTCK cycles with SWDIOTMS HIGH 
to ensure the TAP state machine is in the Test-Logic/Reset state.

• If selecting SWD, the target is in the protocol error state. The debugger must send at least 50 
SWCLKTCK cycles with SWDIOTMS HIGH. This ensures the SWD interface is in the line reset 
state.

Note
 The Activation code selects a protocol, not a target. In a multidrop Serial Wire Debug system with multiple 

SW-DPs, a target must then be selected. For more information, see Target selection protocol, SWD protocol 
version 2 on page 4-105. 

The Selection Alert sequence, in binary, is

0100_1001_1100_1111_1001_0000_0100_0110_1010_1001_1011_0100_1010_0001_0110_0001_ 
1001_0111_1111_0101_1011_1011_1100_0111_0100_0101_0111_0000_0011_1101_1001_1000

This sequence is sent MSB first. This can be represented as either:
• 0x49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first.
• 0x19BC0EA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.

At least
50 clocks with
SWDIOTMS

HIGH

0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1

SWD-to-DS sequence

SWCLKTCK

SWDIOTMS
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Figure 5-10 Selection Alert sequence

Note
 The Selection Alert sequence can be generated by implementing a Linear Feedback Shift Register (LFSR) 
implementing feedback on bits 6, 5, 3 and 0, starting in the state 0b1001001 and shifting out one bit from bit 0 each 
cycle. The sequence starts with a zero start bit and continues with the output of the LFSR.

Figure 5-11 LSFR for generating Selection Alert sequence

The value of the activation code depends on whether SWD or JTAG operation is to be requested. Table 5-1 defines 
the recommended activation codes a debugger must use for JTAG devices, SW-DP devices and SWJ-DP devices. 
These sequences are sent MSB first.

SWCLKTCK

SWDIOTMS

At least 8 cycles 
with SWDIOTMS

HIGH

0 1 0 0 1 0 ... 0 1 1 0 0 0

Selection Alert sequence
(128 cycles)

(0)(0) (0) (0)

4 cycles with 
SWDIOTMS 

LOW

Activation
code

Selected
technology

1 0 0 1 10 0

Selection 
Alert 

sequence

Table 5-1 Activation codes

Activation code Value, MSB first

Devices activated

Protocol 
selectedOther 

JTAG

ADIv5 Debug Ports

JTAG SW SWJ

JTAG-Serial 0b0000_0000_0000 Yes Yes No Yes JTAG

ARM CoreSight SW-DP 0b0101_1000 No No Yes Yes SWD

ARM CoreSight JTAG-DP 0b0101_0000 No Yes No Yes JTAG
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JTAG online activation codes

For compatibility with other standards, all JTAG devices that implement dormant state using the ADIv5 defined 
selection alert sequence, must recognize other sequences as valid JTAG-Serial activation codes.

Figure 5-12 shows, as a state diagram, the sequence that a JTAG device must recognize.

Figure 5-12 Dormant to JTAG state diagram

Each of the bit-strings shown in Figure 5-12 are received MSB first. The transition out of state G2 requires a reset 
of the JTAG TAP, but otherwise returns to dormant state. For more information on this sequence, contact ARM.

Note
 ADIv5 does not define any other activation codes, but also does not prohibit an implementation from recognizing 
other activation codes for compatibility with other standards. Implementations can also use alternative selection 
alert mechanisms. Debuggers can generate multiple selection alert sequences to alert multiple devices, and then use 
the common activation codes to select which devices to activate.
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5.4 Restriction on switching
A debugger must not mix JTAG-DP and SW-DP reads and writes of DAP registers in a single debug session. A 
single debug session is defined as from when a debugger connection is made with the system in a reset state through 
to the debugger connection being broken. At the start of a debug session, the state of the target is essentially 
UNKNOWN. 

Attempting to mix JTAG-DP and SW-DP reads and writes of DAP registers while any component of the DAP is 
active can have unpredictable results. 

A powerup reset cycle might be required to reset the DAP before a change in active Data Link protocol. However, 
this is not required when switching between the active protocol and dormant state.
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Chapter 6 
The Access Port (AP)

A Debug Access Port can include multiple Access Ports. ARM provides two AP definitions, but other designers 
might implement additional APs. This chapter gives an overview of Access Ports, and describes the features that 
must be implemented in every Access Port. 

This chapter contains the following sections:
• Overview of Access Ports (APs) on page 6-122.
• Selecting and accessing an AP on page 6-123.
• The Programmers’ Model for Access Port (AP) registers on page 6-124.

Note
 The following chapters give more information about APs:
• Chapter 7 The Memory Access Port (MEM-AP).
• Chapter 8 The JTAG Access Port (JTAG-AP).
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6.1 Overview of Access Ports (APs)
There are two types of Access Port defined by this ADIv5 specification:
• The Memory Access Port (MEM-AP).
• The JTAG Access Port (JTAG-AP).

A DAP might have multiple Access Ports, and these can be a mixture of types.

Note
 • This Architecture Specification also permits a DAP to include additional Access Port types. A debugger must 

be able to recognize any AP, and must ignore any AP that it does not understand.

• If a DAP has only one Access Port this can be a Memory Access Port, a JTAG Access Port, or an additional 
Access Port, as described in this note. This specification does not require a DAP to include one of the APs 
that it defines.

The ADIv5 specification requires every Access Port to follow a common identification model. This requirement 
applies to the MEM-AP and JTAG-AP implementations defined by ARM, to any future AP implementations by 
ARM, and to any Access Ports that might be implemented by any third party.

The identification model requires every AP to implement an Identification Register:
• The format of the Identification Register is defined by the ADIv5 specification.
• The Identification Register must be implemented at offset 0xFC in the register space.

AP register mapping, and the format of the Identification Register, are described in The Programmers’ Model for 
Access Port (AP) registers on page 6-124.

It is also required that any Access Port supports accesses from the implemented Debug Port, as described in Using 
the Access Port to access debug resources on page 1-27. A summary of how to access an AP is given in Selecting 
and accessing an AP on page 6-123.

There are no other requirements for APs in the ADIv5 specifications. All features provided by an AP can be 
IMPLEMENTATION DEFINED.
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6.2 Selecting and accessing an AP
A full description of how APs are selected and accessed is given in Using the Access Port to access debug resources 
on page 1-27. This section summarizes that information.

In any APACC access, to a MEM-AP, to a JTAG-AP or to an AP not defined by this specification:

• Values held in SELECT determine:

— Which AP is accessed.

— Which four-register bank of AP registers is accessed. This information is passed as the A[7:4] field of 
the AP access.

• The A[3:2] field of the APACC access determines which AP register, within the selected four-register bank, 
is accessed.

• The RnW bit of the APACC access determines whether the AP register access is a read access or a write 
access.

For more information about APACC accesses from a JTAG-DP, see DPACC and APACC, the JTAG-DP DPAccess 
register and AP Access register on page 3-81.

For more information about APACC accesses from a SW-DP, see Serial Wire Debug protocol operation on 
page 4-93.

APACC accesses to a MEM-AP are shown in Figure 7-1 on page 7-129.

APACC accesses to a JTAG-AP are shown in Figure 8-1 on page 8-162.

6.2.1 Stalling accesses

Access Port interfaces can support stalling accesses. These enable the AP to be connected to slow devices, such as 
a memory system or a long JTAG scan chain. In this way, the DAP can put an AP access into a pending state, and 
the access does not have to complete within a fixed number of cycles. This is important because in many cases an 
AP access cannot complete until the associated memory access or JTAG scan has completed. For more information 
see:
• Stalling accesses on page 7-134, for stalling accesses to a MEM-AP.
• Stalling accesses on page 8-167, for stalling accesses to a JTAG-AP.
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6.3 The Programmers’ Model for Access Port (AP) registers

An Access Port (AP) implements 32-bit registers. These are mapped into a 256-byte address space. Using the Access 
Port to access debug resources on page 1-27 summarizes the programmers’ model for accessing these registers. 

Additional information about the AP programmers’ model is given in the chapters that describe the two types of AP:
• Chapter 7 The Memory Access Port (MEM-AP).
• Chapter 8 The JTAG Access Port (JTAG-AP).

ADIv5 requires every AP to implement an AP Identification Register, IDR, at offset 0xFC. This is the last register in 
the AP register space, and is described in IDR, Identification Register.

The IDR is the only register that must be implemented by all Access Ports. This is summarized in Table 6-1.

See Reserved addresses on page 6-126 for the requirements for reserved registers.

6.3.1 IDR, Identification Register

DP architecture The IDR is defined and implemented in DPv0, DPv1, and DPv2.

Purpose The Identification Register identifies the Access Port. An IDR value of zero indicates that 
there is no AP present.

Attributes The IDR is:
• A read-only register.
• Accessed at offset 0xFC of the AP register space.

The IDR bit assignments are:

Revision, bits[31:28] 

Starts at 0x0 for the first implementation of an AP design, and increments by 1 on each major or 
minor revision of the design. Major design revisions introduce functionality changes, minor 
revisions are bug fixes.

JEP106 continuation code, bits[27:24] 

Code that identifies the designer of the AP. See JEP106 identity and continuation codes on 
page 6-125.

For an AP designed by ARM this field has the value 0x4.

JEP106 identity code, bits[23:17] 

Code that identifies the designer of the AP. See JEP106 identity and continuation codes on 
page 6-125.

For an AP designed by ARM this field has the value 0x3B.

Table 6-1 Summary of the common Access Port (AP) register

Address Name Access Description Reset value

0xFC IDR RO AP Identification Register IMPLEMENTATION DEFINED

0010Revision

31 28 27 24 23 17 16 15 8 7 4 3 0

0 1 1 1 0 1 1 Class Reserved, SBZ Variant Type

Continuation
code

Identity
code

JEP106, ARM values

AP Identification

1213
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Class, bits[16:13] 

Defines the class of AP. An AP belongs to a class if it follows a programmers’ model defined as part 
of the ADIv5 specification or extensions to it. This bit field can have the following values:
0b0000 No defined class.
0b1000 Memory Access Port. See Chapter 7 The Memory Access Port (MEM-AP).

Bits[12:8] Reserved, SBZ. This field is reserved for future ID register fields. If a debugger reads a non-zero 
value in this field, it must treat the AP as unidentifiable.

AP identification, bits[7:0] 

Access Port Identification. This bit field identifies the AP implementation. Each AP designer must 
maintain their own list of implementations and associated AP Identification codes.

In an AP implementation by ARM this field is subdivided as:

Variant, bits[7:4] Identifies different AP implementations of the same Type.

Type, bits[3:0] Indicates the type of bus, or other connection, that connects to the AP. See 
ARM AP Identification types.

JEP106 identity and continuation codes

The JEP106 codes are assigned by JEDEC and identify the manufacturer of a device. However, in the AP 
Identification register they identify the designer of the AP. The following sections describe registers that include 
JEP106 codes. Each register description clarifies the meaning of its use of the JEP106 codes:
• IDCODE, the JTAG TAP ID register on page 3-79.
• DPIDR, Debug Port Identification Register on page 2-54.
• TARGETID, Target Identification register on page 2-60.
• The Peripheral ID Registers on page 9-191.

An implementer of an ARM MEM-AP or JTAG-AP must not change the AP Identification Register values from 
those given in IDR, Identification Register on page 6-124.

Note
 • For backwards compatibility, debuggers must treat a JEP106 field of zero as indicating an AP designed by 

ARM. This encoding was used in early implementations of the Debug Access Port. In such an 
implementation, the Revision and Class fields also Read As Zero.

• DAP implementations that comply with the ADIv5 specification must use the JEP106 code and include 
Revision and Class fields.

ARM AP Identification types

Table 6-2 lists the possible values of the Type field for an AP designed by ARM. It also shows the value of the Class 
bit that corresponds to each Type value.

Table 6-2 ADIv5 AP Identification types for an AP designed by ARM

Typea Connection to AP Classb Notes

0x0 JTAG connection 0b0000 Not used by MEM-AP, indicates JTAG-AP. 
Variant field, bits [7:4] of IDR, must be non-zero.

0x1 AMBA AHB bus 0b1000 -
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6.3.2 Reserved addresses

For all APs, reserved registers must be RES0.

This applies to all APs, including any implemented by companies other than ARM.

0x2 AMBA APB2 or APB3 bus 0b1000 -

0x4 AMBA AXI3 or AXI4 bus, with optional ACE-Lite 
support

0b1000 Not defined in issue A of this document.

Otherc Reserved - -

a. Bits [3:0] of the IDR.
b. Bits [16:13] of the IDR.
c. Any value other than 0x0, 0x1, 0x2, or 0x4.

Table 6-2 ADIv5 AP Identification types for an AP designed by ARM (continued)

Typea Connection to AP Classb Notes
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Chapter 7 
The Memory Access Port (MEM-AP)

This chapter describes the implementation of the Memory Access Port (MEM-AP), and how a MEM-AP provides 
the Debug Port connection to a debug component.

This chapter contains the following sections:
• About the function of a Memory Access Port (MEM-AP) on page 7-128.
• MEM-AP functions on page 7-132.
• Implementing a MEM-AP on page 7-142.
• MEM-AP examples of pushed-verify and pushed-compare on page 7-144.
• MEM-AP register summary on page 7-146.
• MEM-AP register descriptions on page 7-147.

Note
 Chapter 6 The Access Port (AP) gives additional information about APs.
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7.1 About the function of a Memory Access Port (MEM-AP)
A MEM-AP provides a DAP with access to a memory subsystem. Another way of describing the operation of a 
MEM-AP is that:
• A debug component implements a memory-mapped abstraction of a set of resources.
• The MEM-AP provides AP access to those resources.

However, an access to a MEM-AP might only access a register within the MEM-AP, without generating a memory 
access.

7.1.1  The programmers’ model for debug register access

The programmers’ model for debug registers is a memory map. Although use of a memory bus system is not 
required, this abstraction enables the same programming model to be used for accessing debug registers and system 
memory. With this model, the debug registers might be implemented as a peripheral within the system memory 
space.

The debug registers in a debug component occupy one or more 4KB blocks of address space, and a system might 
contain several such debug components.

Although the architecture specifications permits a debug component to implement multiple 4KB blocks, most 
components implement a single block. 

Note
 Although a component might occupy only 4KB of address space, ARM recommends that the base address of each 
component is aligned to the largest translation granule supported by any processor that can access the component. 
For an ARMv8 processor, this might be 64KB.

Debug register files

A 4KB block of address space accessible from an Access Port can be referred to as a debug register file. A single 
Access Port can access multiple debug register files. There is a base standard for debug register file identification, 
and debuggers must be able to recognize and ignore register files that they do not support.

A single Memory Access Port can access a mixture of system memory and debug register files.

ROM tables

A ROM table is a special case of a debug register file. It is a 4KB memory block that identifies a system.

If there is only one debug component in the system to which the MEM-AP is connected then the ROM table is 
optional. However, because the ROM table contains a unique system identifier that identifies the complete SoC to 
the debugger, an implementation might choose to include a ROM table even if there is only one other debug 
component in the system.

When a system includes more than one debug component it must include a ROM table.

Chapter 10 ROM Tables describes ROM tables.

7.1.2 Selecting and accessing the MEM-AP

Figure 7-1 on page 7-129 shows the implementation of a MEM-AP, and how the MEM-AP connects the DP to the 
debug components. Two example debug components are shown, a processor core and an Embedded Trace 
Macrocell (ETM), together with a ROM table. APACC accesses to the DP are passed to the MEM-AP.

The method of selecting an AP, and selecting a specific register within the selected AP, is the same for MEM-APs 
and JTAG-APs. This is summarized in Selecting and accessing an AP on page 6-123.
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Figure 7-1 MEM-AP connecting the DP to debug components

7.1.3 The MEM-AP registers

The MEM-AP registers, and the memory map of the MEM-AP, are described in detail in MEM-AP register 
descriptions on page 7-147. However, you require a basic knowledge of the functions of these registers to 
understand the operation of the MEM-AP. The MEM-AP registers are shown in Figure 7-1. To summarize, these 
registers are:

Control/Status Word register, CSW 

The CSW holds control and status information for the MEM-AP.

Transfer Address Register, TAR 

The TAR holds the address for the next access to the memory system, or set of debug resources, 
connected to the MEM-AP. The MEM-AP can be configured so that the TAR is incremented 
automatically after each memory access. Reading or writing to the TAR does not cause a memory 
access.
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Data Read/Write register, DRW 

The DRW is used for memory accesses:

• Writing to the DRW initiates a write to the address specified by the TAR.

• Reading from the DRW initiates a read from the address specified by the TAR. When the read 
access completes, the value is returned from the DRW.

Banked Data Registers, BD0 to BD3 

The Banked Data Registers, BD0, provide direct read or write access to a block of four words of 
memory, starting at the address specified in the TAR:
• Accessing BD0 accesses (TAR[31:4] << 4) in memory.
• Accessing BD1 accesses ((TAR[31:4] << 4) + 0x4) in memory.
• Accessing BD2 accesses ((TAR[31:4] << 4) + 0x8) in memory.
• Accessing BD3 accesses ((TAR[31:4] << 4) + 0xC) in memory.

The value in TAR[3:0] is ignored in constructing the access address:
• Bits[3:2] of the access address depend solely on which of the four banked data registers is 

being accessed.
• Bits[1:0] of the access is always zero.

Configuration register, CFG 

The CFG register hold information about the configuration of the MEM-AP. 

Debug Base Address register, BASE 

The BASE register is a pointer into the connected memory system. It points to one of:
• The start of a set of debug registers for the single connected debug component.
• The start of a ROM table that describes the connected debug components.

Identification Register, IDR 

The IDR identifies the MEM-AP.

Note
 This brief summary of the MEM-AP registers does not include cross-references to the detailed register descriptions. 
For more information about these registers, see MEM-AP register descriptions on page 7-147.

7.1.4 MEM-AP register accesses and memory accesses

Note
 In this section, an access to the debug resources is described as a memory access. 

This section summarizes all of the possible APACC accesses to a MEM-AP. This means it covers accesses to each 
of the MEM-AP registers. These accesses are summarized in the following sections:
• Accesses that do not initiate a memory access.
• Accesses that initiate a memory access on page 7-131.
• Accesses that support pushed transactions and the transaction counter on page 7-131.

Accesses that do not initiate a memory access

APACC accesses to the following MEM-AP registers do not cause a memory access:
• The Control/Status Word register, CSW.
• The Transfer Address Register, TAR.
• The Configuration register, CFG.
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• The Debug Base Address register, BASE.
• The Identification Register, IDR.

Accesses that initiate a memory access

This section introduces the APACC accesses to MEM-AP registers that initiate one or more memory accesses. 
These APACC accesses are:

• Accesses to the DRW register. A memory access is initiated, using the address held in the TAR.

• Accesses to one of the Banked Data Registers, BD0. 

The address used for the memory access depends on which Banked Data Register is accessed.

However, if the MEM-AP implementation includes the Large Data Extension, and CSW.Size specifies a transfer 
size that is larger than word, some DRW and BD0 accesses do not initiate a memory access, see Use of the DRW 
register with the MEM-AP Large Data Extension on page 7-156 and Use of the BD registers with the MEM-AP 
Large Data Extension on page 7-152.

In some cases, a single AP transaction initiates more than one memory access. The two cases where this happens are:

• If the transaction counter is set. See The transaction counter on page 2-38.

• If packed transfers are supported and enabled and the transfer size is smaller than word. See Packed transfers 
on page 7-138.

For more information see Packed transfers and the transaction counter on page 7-139.

If an AP transaction initiates one or more memory accesses, the AP transaction does not complete until one of the 
following occurs:

• All of the memory accesses complete successfully.

• A memory access terminates with an error response. In this case, any outstanding accesses to the debug 
component are abandoned.

• The AP accesses are aborted using the ABORT register.

Accesses that support pushed transactions and the transaction counter

A MEM-AP supports pushed transactions and sequences of transactions to the following registers only:
• DRW, Data Read/Write register.
• Banked Data registers 0-3, see BD0-BD3, Banked Data registers 0-3 on page 7-150.

For more information see:
• Pushed-compare and pushed-verify operations on page 2-36.
• The transaction counter on page 2-38.
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7.2 MEM-AP functions
This section describes the functions of a MEM-AP. These functions are controlled by the MEM-AP registers, as 
described in MEM-AP register descriptions on page 7-147.

The following sections describe functions that a MEM-AP must support:
• Enabling access to the connected debug device or memory system.
• Auto-incrementing the Transfer Address Register (TAR).
• Stalling accesses on page 7-134.
• Response to debug component errors on page 7-135.

The following sections describe functions that an MEM-AP implementation might support. In other words, it is 
IMPLEMENTATION DEFINED whether a particular MEM-AP supports these features.
• Variable access size for memory accesses on page 7-136.
• Byte lanes on page 7-137.
• Packed transfers on page 7-138.
• Slave memory port and software access control on page 7-140.
• Implementing a MEM-AP on page 7-142.

Note
 Some of the IMPLEMENTATION DEFINED functions are inter-dependent. These dependencies are summarized in 
MEM-AP implementation requirements on page 7-142.

7.2.1 Enabling access to the connected debug device or memory system

Access to the debug device or memory system is controlled by Device Enable signal, DEVICEEN. This signal is 
an input to the Debug Access Port (DAP). DEVICEEN is normally tied HIGH, so that it is asserted even when the 
Debug Enable signal, DBGEN, is LOW. This means that the MEM-AP can be programmed even when debug is 
disabled.

The current value of the DEVICEEN signal is shown by the read-only CSW.DeviceEn bit.

The DeviceEn flag shows whether the MEM-AP is able to issue transactions to the memory system to which it is 
connected. When DeviceEn is 0, no transactions can be issued to any address. This means that any access to the 
Data Read/Write Register or to any of the Banked Data Registers:

• Immediately causes the CTRL/STAT.STICKYERR bit to be set to 1.

• Has no other effect. The access does not cause a MEM-AP transaction.

If there is no DEVICEEN signal for a device then the DeviceEn flag must Read-as-One.

7.2.2 Auto-incrementing the Transfer Address Register (TAR)

As indicated in The MEM-AP registers on page 7-129, the Transfer Address Register (TAR) holds an address in the 
address map of the debug resource connected to the MEM-AP. This address is used as:

• The address in the debug component memory map of read or write accesses initiated by a read or write of the 
Data Read/Write Register.

• The base address determines the address in the debug component memory map of read or write accesses 
initiated by a read or write of one of the Banked Data Registers, as described in Accesses that initiate a 
memory access on page 7-131.

Software can configure the MEM-AP to auto-increment the TAR on every read or write access to the Data 
Read/Write Register. Auto-incrementing is controlled by the CSW.AddrInc field.
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Note
 Accesses to the Banked Data Registers never cause the TAR to auto-increment. The AddrInc field has no effect on 
accesses to the Banked Data Registers.

The permitted values of the AddrInc field, and their meanings, are summarized in Table 7-1.

When auto address incrementing is enabled, the address in the TAR is updated whenever an access to the DRW is 
successful. However, if the DRW transaction completes with an error response, or the transaction is aborted, the 
TAR is not incremented.

In more detail, the possible settings of this field are:

Auto-increment off 

No auto-incrementing occurs. The value in the TAR is unchanged after any Data Read/Write 
Register access.

Increment single 

After a successful Data Read/Write Register access, the address in the TAR is incremented by the 
size of the access. For information about different access sizes see Variable access size for memory 
accesses on page 7-136.

Note
 It is IMPLEMENTATION DEFINED whether a MEM-AP supports transfer sizes other than Word. If a 

MEM-AP only supports word transfers then, when Increment single is selected, the TAR always 
increments by four after a successful DRW transaction.

Increment packed 

If packed transfers are supported, setting AddrInc to 0b10, Increment packed, enables packed 
transfer operation. Packed transfers are described in more detail in Packed transfers on page 7-138. 
In brief, with packed transfers multiple halfword or byte memory accesses are packed into a single 
word APACC access.

It is IMPLEMENTATION DEFINED whether a MEM-AP supports packed transfers, but:

• An implementation that supports transfers smaller than word must support packed transfers.

• Packed transfers cannot be supported on a MEM-AP that only supports whole-word 
transfers.

Table 7-1 Summary of AddrInc field values

AddrInc value Description Support required?

0b00 Auto-increment off Always.

0b01 Increment single Always.

0b10 Increment packed If Packed transfers are supported. See Packed transfers on page 7-138.
If Packed transfers are not supported, the value 0b10 selects the Auto-increment off mode and 
reading the AddrInc value returns 0b00.

0b11 Reserved -
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When packed transfer operation is enabled and the transfer size is smaller than word, each DRW 
access causes multiple memory accesses, and the value in the TAR is auto-incremented correctly 
after each memory access. For example:

• For packed accesses with Size set to halfword (16-bits), each DRW read access generates two 
data bus transfers. The value in the TAR is incremented by 0x2 after each successful data bus 
transfer. As described in Packed transfers on page 7-138, the two halfword values from the 
two reads are packed into a single 32-bit word that is returned through the APACC.

• With packed accesses enabled and Size set to byte, a single DRW write operation generates 
four 8-bit data bus transfers, and the TAR is incremented by 0x1 after each of these transfers.

Automatic address increment is only guaranteed to operate on the bottom 10-bits of the address held in the TAR. 
Auto address incrementing of bit [10] and beyond is IMPLEMENTATION DEFINED. This means that auto address 
incrementing at a 1KB boundary is IMPLEMENTATION DEFINED. For example, if the TAR is set to 0x14A4, and the 
access size is word, successive accesses to the DRW increment TAR to 0x14A8, 0x14A, and in steps of 4 bytes up to 
the end of the 1KB range at 0x17FC. At this point, the auto-increment behavior on the next DRW access is 
IMPLEMENTATION DEFINED.

7.2.3 Stalling accesses

A MEM-AP must support stalling accesses, to enable connection to slow devices such as a slow memory system. 
This means that an access can be issued by the DP but does not have to complete within a fixed number of cycles. 
This is important because a MEM-AP access to the DRW register, or to one of the Banked Data Registers BD0, does 
not complete until the required memory access completes.

An example of the importance of stalling accesses is given by the mode of operation, specified by the ARMv7 
Debug Architecture, where accesses to the Data Transfer Registers (DTRs) and Instruction Transfer Register (ITR) 
do not complete until the processor is ready to accept new data. The following sequence describes how a processor 
that complies with the ARMv7 Debug Architecture, and an ADIv5 DAP that comprises a MEM-AP and a JTAG-DP, 
might co-operate to inform the debugger that it has to retry an access because of such a condition.

1. The initial conditions are:

• The processor core is idle and configured to stall accesses to its ITR and DTRs when it is not ready to 
accept new data.

• The DP SELECT register addresses a MEM-AP with a connection to the processor.

• The AP TAR addresses the ITR of the processor core.

2. The debugger writes a first instruction to the ITR. The process is:

• Perform an AP write to DRW with the first instruction to execute:
— The AP is ready, so an OK/FAULT ACK is returned at the Capture-DR state.
— At the Update-DR state the DP initiates a transfer to the AP.

• The TAR is addressing the ITR on the processor, and the AP access is a write to the DRW. Therefore, 
the AP initiates a write to the ITR through its connection to the processor.

• The core accepts the transfer, because the processor is idle and the instruction complete flag, 
InstrCompl, is set to 1.

• The transfer completes.

• The core starts to execute the instruction from the ITR. InstrCompl = 0.

Note
 The ACK of OK/FAULT is issued before the transfer is accepted by the core.

3. The debugger writes a second instruction to the ITR:

• It performs an AP write to DRW with the next instruction to execute:
— The AP is ready, so an OK/FAULT ACK is returned at the Capture-DR state.
— At the Update-DR state the DP initiates a transfer to the AP.
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• The TAR has not changed, therefore, the AP initiates a second write to the ITR through its connection 
to the processor.

• The core is still executing the first instruction (InstrCompl = 0) and cannot accept the transfer.

• The transfer can not complete, and the AP remains busy.

Note
 The ACK value returned is OK/FAULT because the AP is ready to accept a new transfer. The AP does not 

know that the core is not able to accept the transfer until it attempts the transfer.

4. The debugger writes a third instruction to the ITR:

• It performs an AP write to DRW with the next instruction to execute:
— The AP is not ready, so a WAIT ACK is returned at the Capture-DR state.
— At the Update-DR state the DP discards the AP access request, because the AP was not ready 

at Capture-DR.
The debugger might now retry the AP write a number of times, but as long as the first instruction has 
not completed, the DP returns a WAIT ACK at the Capture-DR state

5. At some point the core completes the first instruction:

• InstrCompl becomes 1.

• The External Debug Interface on the core is now ready to accept the second instruction.

• The AP transfer, from stage 3, is accepted by the core, and the second instruction is written to the ITR.

• The core starts to execute the second instruction. InstrCompl = 0, again.

• Because the AP transfer is complete, the AP returns to the ready state.

6. The debugger retries writing the third instruction to the ITR:

• It performs an AP write to DRW with the third instruction:
— The AP is ready, so an OK/FAULT ACK is returned at the Capture-DR state.
— At the Update-DR state the DP initiates a transfer to the AP.

• The TAR has not changed, therefore, the AP initiates another write to the ITR through its connection 
to the processor.

• The response to the AP write attempt depends on whether the processor has finished processing the 
last instruction written to the ITR:

— If the processor is idle, with InstrCompl = 1, the AP transfer completes, writing a new 
instruction to the ITR. The core starts to execute the new instruction, and the AP returns to the 
ready state. This stage, stage 6, of the debug session is repeated for the next instruction from the 
debugger.

— If the processor is still processing the previous instruction InstrCompl = 0. The processor cannot 
accept the transfer and the AP remains busy. The debug session continues from stage 4.

7.2.4 Response to debug component errors

On an error response from a debug component, the MEM-AP returns an error to the DP. As a result of this, the DP 
sets the STICKYERR flag, see Sticky flags and DP error responses on page 2-34.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-135
ID080813 Non-Confidential



7 The Memory Access Port (MEM-AP) 
7.2 MEM-AP functions
7.2.5 Variable access size for memory accesses

It is IMPLEMENTATION DEFINED whether an MEM-AP supports memory access sizes other than word (32-bit).

If the MEM-AP Large Data Extension is not supported, then when a MEM-AP implementation supports different 
sized accesses, it must support word, halfword and byte accesses.

Note
 The ARM Debug Interface specification does not require a MEM-AP to support accesses other than word. However 
if a MEM-AP can access other memory, such as system memory, ARM recommends that it supports other access 
sizes.

For more information see MEM-AP implementation requirements on page 7-142.

The access size is controlled by the CSW.Size field. Table 7-2 shows the access size options.

When a Size smaller than word is used, the resulting data access is returned in byte lanes. See Byte lanes on 
page 7-137 for more information.

Caution
 Behavior is UNPREDICTABLE if a Banked Data Register is accessed with the Size field set to any size other than word 
or doubleword.

Table 7-2 Size field values when the MEM-AP supports different access sizes

Size value, CSW.Size Memory access size Support required?

0b000 Byte (8-bits) No

0b001 Halfword (16-bits) No

0b010 Word (32-bits) Yesa

a. On a MEM-AP implementation that does not support access sizes other than word, the 
Size field is read-only, and always returns the value 0b010.

0b011b

b. Supported by the MEM-AP Large Data Extension, see MEM-AP Large Data Extension 
on page 7-143. If the extension is not implemented, this value is reserved.

Doubleword (64-bits) No

0b100b 128-bits No

0b101b 256-bits No

0b110 - 0b111 Reserved -
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7.2.6 Byte lanes

With a MEM-AP that supports memory transfers of less than 32-bits, when packed transfers are not enabled, the 
data transfers between the DRW and the debug component are byte-laned as described in this section. This 
byte-laning depends on:

• The memory transfer size, specified by the CSW.Size field, see Variable access size for memory accesses on 
page 7-136.

• The bottom two bits of the TAR, TAR[1:0].

If supported, packed transfers also use byte laning for byte and halfword transfers. This is described in Packed 
transfers on page 7-138.

Table 7-3 shows how the DRW data is byte-laned.

The IMPLEMENTATION DEFINED behavior shown in Table 7-3 is one of the following:

• Unaligned portions of the address are ignored. For example, an unaligned word access to 0x8003 accesses the 
32-bit value at 0x8000.

• The access is faulted, and the CTRL/STAT.STICKYERR bit is set to 1.

• The access is made to the unaligned address specified in TAR[31:0], and the result packed as if packed 
transfers were enabled, see Packed transfers on page 7-138. The data transfer might be split into more than 
one memory access across the connection to the debug component.

For example, an unaligned word access to 0x8003 accesses the bytes at 0x8003, 0x8004, 0x8005 and 0x8006. This 
might generate four byte-wide accesses to memory, or the accesses to bytes 0x8004 and 0x8005 might be 
performed as a single halfword (16-bit) access.

Big-endian support

The byte-laning described in this section has the least significant byte of DRW or BD0-BD3 containing data from 
the lowest address, and so might be described as little-endian.

Previous versions of this manual described a variant of the MEM-AP which supported an alternative form of 
byte-laning where the most significant byte of DRW or BD0-BD3 contained the byte from the lowest address, 
described as big-endian. Bit[0] of the CFG register described whether the MEM-AP was little-endian or big-endian. 
ADIv5.2 obsoletes such implementations.

If the target uses a big-endian memory arrangement, the external debugger must manipulate the values it passes 
through the MEM-AP accordingly.

Table 7-3 Byte-laning of memory accesses from the DRW

CSW[2:0], Size TAR[1:0] Access data

0b000, byte 0b00 DRW[7:0]

0b01 DRW[15:8]

0b10 DRW[23:16]

0b11 DRW[31:24]

0b001, halfword 0b00 DRW[15:0]

0b10 DRW[31:16]

0bX1 IMPLEMENTATION DEFINED

0b010, word 0b00 DRW[31:0]

0b1X, 0bX1 IMPLEMENTATION DEFINED
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7.2.7 Packed transfers

Whether a MEM-AP supports packed transfers is IMPLEMENTATION DEFINED. If packed transfers are supported they 
are enabled by setting the auto address increment field, CSW.AddrInc, to 0b10, Increment packed. See 
Auto-incrementing the Transfer Address Register (TAR) on page 7-132.

When packed transfers are enabled, each access to the DRW results in one of the following actions, depending on 
the value of the CSW.Size field, see Variable access size for memory accesses on page 7-136:
• When CSW.Size = 0b010, word, there is a single word (32-bit) access.
• When CSW.Size = 0b001, halfword, there are two halfword (16-bit) accesses.
• When CSW.Size = 0b000, byte, there are four byte (8-bit) accesses.

Use of packed transfers with CSW.Size set to a transfer size larger than word is UNPREDICTABLE.

When packed transfers are enabled, after each successful memory access the address held in the Transfer Address 
Register is automatically updated by the access size.

Accesses are always made in increasing memory address order:

• For write accesses to memory, data is unpacked from the DRW in byte-lanes that depend on the memory 
address of each write access.

• For read accesses, data is packed into the DRW in byte-lanes that depend on the memory address of each read 
access.

The byte lanes for data packing and unpacking are the same as those described in Table 7-3 on page 7-137. This is 
shown in the following examples:
• Example 7-1, Halfword packed write operation.
• Example 7-2, Byte packed write operation.
• Example 7-3 on page 7-139, Halfword packed read operation on page 7-139.

Example 7-1 Halfword packed write operation

This example describes a single word (32-bit) write access to the DRW on a MEM-AP with the following settings:
• Size, CSW[2:0] = 0b001, to give halfword (16-bit) memory accesses.
• AddrInc, CSW[5:4] = 0b10, to give packed transfer operation.
• TAR[31:0] = 0x00000000, to define the base address of the access.

Two write transfers are made. The halfword entries in Table 7-3 on page 7-137 define the byte-laning for these 
accesses. The accesses are made in the following order:

1. TAR[1]=0, so write DRW[15:0] to address 0x00000000.

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000002.

2. TAR[1]=1, so write DRW[31:16] to address 0x00000002.

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000004.

Example 7-2 Byte packed write operation

This example describes a single word (32-bit) write access to the DRW on a MEM-AP with the following settings:
• Size, CSW[2:0] = 0b000, to give byte (8-bit) memory accesses
• AddrInc, CSW[5:4] = 0b10, to give packed transfer operation
• TAR[31:0] = 0x00000002, to define the base address of the access.
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Four write transfers are made. The byte entries in Table 7-3 on page 7-137 define the byte-laning for these accesses. 
The accesses are made in the following order:
• TAR[1:0]=0b10, so write DRW[23:16] to address 0x00000002.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000003.
• TAR[1:0]=0b11, so write DRW[31:24] to address 0x00000003.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000004.
• TAR[1:0]=0b00, so write DRW[7:0] to address 0x00000004.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000005.
• TAR[1:0]=0b01, so write DRW[15:8] to address 0x00000005.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000006.

Example 7-3 Halfword packed read operation

This example describes a single word (32-bit) read access to the DRW on a MEM-AP with the following settings:
• Size, CSW[2:0]= 0b001, to give halfword (16-bit) memory accesses.
• AddrInc, CSW[5:4] = 0b10, to give packed transfer operation.
• TAR[31:0] = 0x00000002, to define the base address of the access.

Two read transfers are made. The little-endian halfword entries in Table 7-3 on page 7-137 define the byte-laning 
for these accesses. The accesses are made in the following order:

• TAR[1]=1, so read a halfword from address 0x00000002, and pack this value into DRW[31:16].

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000004.

• TAR[1]=0, so read a halfword from address 0x00000004, and pack this value into DRW[15:0].

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000006.

• At this point, the complete word has been read into the DRW, and the APACC read access completes.

The descriptions given in these four examples assume that each memory access completes successfully. If any 
access terminates with an error response, the sequence is halted at that point, and the MEM-AP returns an error to 
the DP.

Note
 Packing occurs before any pushed comparisons are made. Pushed comparisons are made, and the STICKYCMP flag 
set to 1 if necessary, only when a complete word of data has been packed into the DRW. See Pushed-compare and 
pushed-verify operations on page 2-36 for a description of pushed comparisons.

Packed transfers and the transaction counter

The optional Debug Port transaction counter, described in The transaction counter on page 2-38, means that an 
external debugger can make a single AP transaction request that generates multiple AP transactions. Each of these 
transactions transfers a single word (32-bits) of data, and the TAR is incremented automatically between the 
transactions. If the MEM-AP supports memory accesses smaller than word and packed transfers, if packed transfer 
operation is enabled, each of the AP transactions driven by the transaction counter is split into multiple memory 
accesses. For example, if the transaction counter is programmed to generate eight word accesses, and the MEM-AP 
is programmed to make packed byte transfers, altogether 32 memory accesses are made, each of one byte.
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7.2.8 Slave memory port and software access control

The CSW register can include a debug software access enable flag, CSW.DbgSwEnable. Whether this bit is 
supported is IMPLEMENTATION DEFINED. The following subsections describe the possible alternative uses of this bit:
• Using DbgSwEnable to control a slave memory port.
• Use of DbgSwEnable to control software access to debug resources.

If neither of these features is implemented then CSW.DbgSwEnable is RAZ.

If implemented, then CSW.DbgSwEnable must be ignored and treated as one if the MEM-AP device is disabled.

Caution
 If CSW.DbgSwEnable is implemented, then setting it to zero can cause software executing on the target to generate 
unexpected errors, which is likely to cause it to malfunction.

ARM strongly recommends not setting CSW.DbgSwEnable to zero.

A MEM-AP can include a slave memory port, that an external bus master can use to access the area of memory 
mastered by the MEM-AP. An example of this use would be permitting the external bus master to access the debug 
registers of the system to which the MEM-AP is connected.

If a MEM-AP implements a slave memory port then slave memory port accesses are multiplexed with DAP 
accesses. Slave memory port accesses have bit [31] of the access address forced to zero. A debug component can 
use the value of this address bit to distinguish between slave memory port accesses and DAP accesses.

The BASEADDR field on page 7-149 gives more information about MEM-AP memory addressing.

Note
 The DAP can emulate a slave memory port access by setting bit [31] of the Transfer Address Register to 0.

Using DbgSwEnable to control a slave memory port

If a MEM-AP implements a slave memory port then the DbgSwEnable bit must be implemented so that the port can 
be enabled or disabled. The behavior of this bit is shown in Table 7-4.

Use of DbgSwEnable to control software access to debug resources

The DbgSwEnable bit can drive a system-level signal, DBGSWENABLE. This signal gates software access to 
debug resources. For example, in a processor that complies with the ARMv7 Debug Architecture, some CP14 
registers are not accessible when DBGSWENABLE is LOW. For more information see the ARM Architecture 
Reference Manual, ARMv7-A and ARMv7-R edition.

Table 7-4 Use of DbgSwEnable bit, bit [31], to control a slave memory port

DbgSwEnable (bit [31]) Slave memory port

0 Disabled.

1 Enabled.
This is the reset value.
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Table 7-5 shows the behavior of the DbgSwEnable bit when DBGSWENABLE is implemented.

Table 7-5 Use of DbgSwEnable bit, bit [31], to control the DBGSWENABLE signal

DbgSwEnable (bit [31]) DBGSWENABLE signal

0 LOW.

1 HIGH.
This is the reset value.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 7-141
ID080813 Non-Confidential



7 The Memory Access Port (MEM-AP) 
7.3 Implementing a MEM-AP
7.3 Implementing a MEM-AP
This section gives information about the implementation of a MEM-AP and contains the following:
• IMPLEMENTATION DEFINED features of an MEM-AP implementation.
• MEM-AP implementation requirements.
• MEM-AP Extensions on page 7-143.

7.3.1 IMPLEMENTATION DEFINED features of an MEM-AP implementation

There are a number of IMPLEMENTATION DEFINED features of an MEM-AP implementation:

• Whether the MEM-AP supports data bus access sizes other than word, including whether the implementation 
includes the extension summarized in MEM-AP Large Data Extension on page 7-143.

• Whether the MEM-AP supports packed transfers.

• Whether the MEM-AP supports addresses larger than 32-bit, meaning whether the implementation includes 
the extension summarized in MEM-AP Large Physical Address Extension on page 7-143.

• Whether the MEM-AP supports barrier operations, meaning whether the implementation includes the 
extension summarized in MEM-AP Barrier Operation Extension on page 7-143.

Also, it is IMPLEMENTATION DEFINED whether the features described in Slave memory port and software access 
control on page 7-140 are supported.

These implementation choices affect the following register fields:
• CSW.{DbgSwEnable, Mode, AddrInc, Size}.
• CFG.{LD, LA, BE}.

In addition, the CSW register can include the following optional fields that are not described elsewhere in this 
chapter:

CSW.{Prot, Type}, bits[30:24, 15:12] 

These fields can be implemented to provide a bus access control mechanism. If implemented, it 
enables a debugger to specify flags for a memory access. The permitted values and their significance 
are IMPLEMENTATION DEFINED, because they relate to the underlying bus architecture. ARM 
strongly recommends that these bits reset to useful values, that might not be zero. For example:

• If the bus supports privileged and non-privileged accesses, the reset value of this field must 
select privileged accesses.

• If the bus supports code and data accesses, the reset value must select data accesses.

• If the bus supports both Secure and Non-secure address spaces, CSW.{Prot,Type} must reset 
to select Non-secure addresses.

CSW.SPIDEN, bit[23] 

This field can be implemented to indicate whether the MEM-AP can generate secure accesses.

7.3.2 MEM-AP implementation requirements

The descriptions given in the section MEM-AP functions on page 7-132 indicate a number of areas where the 
MEM-AP functionality is IMPLEMENTATION DEFINED. However, the IMPLEMENTATION DEFINED features are 
inter-dependent. These dependencies are summarized here.

In a MEM-AP:

• The options for the size of data bus accesses are:

— Support word (32-bit) accesses only.

— Support word (32-bit), halfword (16-bit), and byte (8-bit) accesses, and optionally support larger 
access sizes.
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No other combinations of supported access sizes are permitted. For more information see Variable access size 
for memory accesses on page 7-136.

• If access sizes smaller than word are not supported then packed transfers are not supported. Otherwise, it is 
IMPLEMENTATION DEFINED whether packed transfers are supported. For more information see Packed 
transfers on page 7-138.

• It is IMPLEMENTATION DEFINED whether access sizes larger than 32-bit are supported. If larger access sizes 
are not supported, CFG.LD is RAZ. For more information, see MEM-AP Large Data Extension.

• It is IMPLEMENTATION DEFINED whether addresses larger than 32-bit are supported. If larger addresses are not 
supported, CFG.LA is RAZ. For more information, see MEM-AP Large Physical Address Extension.

• It is IMPLEMENTATION DEFINED whether barrier operations are supported. If barrier operations are not 
supported, CSW.Mode is RAZ. For more information, see MEM-AP Barrier Operation Extension.

7.3.3 MEM-AP Extensions

The following subsections summarize the effects of the optional MEM-AP Extensions.

MEM-AP Large Physical Address Extension

The MEM-AP Large Physical Address Extension provides address spaces of up to 64-bits. 

Implementing this extension changes the format of the following MEM-AP registers:
• BASE, Debug Base Address register on page 7-147.
• BD0-BD3, Banked Data registers 0-3 on page 7-150.
• CFG, Configuration register on page 7-153.
• CSW, Control/Status Word register on page 7-154.
• DRW, Data Read/Write register on page 7-156.
• TAR, Transfer Address Register on page 7-158.

MEM-AP Large Data Extension

The MEM-AP Large Data Extension can support 32-bit, 64-bit, 128-bit, or 256-bit accesses, in addition to optional 
8-bit and 16-bit accesses. 

The following registers have different formats to support this extension:
• CSW, Control/Status Word register on page 7-154.
• DRW, Data Read/Write register on page 7-156.
• BD0-BD3, Banked Data registers 0-3 on page 7-150.
• CFG, Configuration register on page 7-153.

Although the extension can support 64-bit, 128-bit, and 256-bit accesses, it does not require an implementation to 
support all of these access sizes. If the CSW.Size field is written with a value corresponding to a size that is not 
supported, or with a reserved value:
• A read of the field returns a value corresponding to a supported size.
• MEM-AP behavior corresponds to the value returned by the read of the CSW.Size field.

MEM-AP Barrier Operation Extension

The MEM-AP Barrier Operation Extension provides support for barrier operations. If the bus supports a weak 
memory ordering model, then barrier operations must create order.

The following registers are new or have different formats to support this extension:
• CSW, Control/Status Word register on page 7-154.

• MBT, Memory Barrier Transfer register on page 7-158.
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7.4 MEM-AP examples of pushed-verify and pushed-compare
A Debug Port (DP) might support pushed operations, as described in Pushed-compare and pushed-verify operations 
on page 2-36. However, these operations involve interaction between the DP and an AP, because each pushed 
operation requires an AP read. In the case of a MEM-AP, this requires a read from the connected debug memory 
system. This section gives some examples of pushed operations on a DP that is connected to a MEM-AP.

7.4.1 Example use of pushed-verify operation on a MEM-AP

You can use pushed-verify to verify the contents of system memory:

• Make sure that the MEM-AP Control/Status Word (CSW) register is set up to increment the Transfer Address 
Register (TAR) after each access.

• Write to the Transfer Address Register (TAR) to indicate the start address of the memory region that is to be 
verified.

• Write a series of expected values as AP transactions. On each write transaction, the DP issues an AP read 
access, compares the result against the value supplied in the AP write transaction, and sets the 
CTRL/STAT.STICKYCMP bit if the values do not match.

The TAR is incremented on each transaction.

In this way, the series of values supplied is compared against the contents of the memory region, and STICKYCMP 
set to 1 if they do not match.

7.4.2 Example use of pushed-find operation on a MEM-AP

You can use pushed-find to search system memory for a particular word.

• Make sure that the MEM-AP Control/Status Word (CSW) register is set up to increment the TAR after each 
access.

• Write to the Transfer Address Register (TAR) to indicate the start address of the debug register region that is 
to be searched.

• Repeatedly write the value to be searched for as an AP write transaction to the Data Read/Write register 
(DRW). On each transaction the MEM-AP reads the location indicated by the TAR. 

— The value returned is compared with the value supplied in the AP write transaction. If they match, the 
STICKYCMP flag is set to 1.

— Otherwise, the TAR is incremented.

If you use pushed-find with byte lane masking you can search for one or more bytes.

Example using the transaction counter for a pushed-find operation on a MEM-AP on page 7-145 describes how the 
transaction counter can refine this search operation.

You can use pushed-find without address incrementing to poll a single location, for example to test for a flag being 
set to 1 on completion of an operation.
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7.4.3 Example using the transaction counter for a pushed-find operation on a MEM-AP

The transaction counter can refine the pushed-find search operation described in Example use of pushed-find 
operation on a MEM-AP on page 7-144. Pushed-find enables you to search system memory for a particular word, 
and if used with byte lane masking you can search for one or more bytes. The transaction counter enables you use 
a single AP write transaction to search an area of memory.

To perform a search under the control of the transaction counter:

• Make sure that the MEM-AP Control/Status Word (CSW) register is set up to increment the TAR after each 
access.

• Write to the Transfer Address Register (TAR) to indicate the start address of the debug register region that is 
to be searched.

• Write to the transaction counter field, CTRL/STAT.TRNCNT to indicate the required number of repeat 
accesses. This value defines the size of the region to be searched.

• Write the value you are searching for as an AP write to the Data Read/Write register (DRW). The MEM-AP 
repeatedly reads the location indicated by the TAR. The value returned by each read is compared with the 
value supplied in the AP write transaction. If they match, the STICKYCMP flag is set to 1 and the operation 
completes. Otherwise:

— The TAR is incremented. 

— If the transaction counter is nonzero, it is decremented. 

The operation completes when either the STICKYCMP flag is set to 1 or after the final read when the 
transaction counter was zero.
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7.5 MEM-AP register summary
Table 7-6 summarizes the MEM-AP registers, and indicates where they are described in detail. This table shows the 
memory map of the MEM-AP registers, and includes the Identification Register that is described in Chapter 6 The 
Access Port (AP).

All of the registers listed in Table 7-6 are required in every MEM-AP implementation.

Reserved addresses in the register memory map are RES0.

Using the Debug Port to access Access Ports on page 1-24 explains how to access AP registers.

Table 7-6 Summary of Memory Access Port (MEM-AP) registers

Addressa Access Reset value Description 

0x00 RW See CSW, Control/Status 
Word register on 
page 7-154.

See CSW, Control/Status Word register on page 7-154.

0x04 RW UNKNOWN See TAR, Transfer Address Register on page 7-158.

0x08 RW 0x00000000 See TAR, Transfer Address Register on page 7-158.
The entries in this row only apply if the implementation 
includes the Large Physical Address Extension.b

Otherwise, this register is reserved, RES0.

0x0C RW Not applicable.c See DRW, Data Read/Write register on page 7-156.

0x10 RW Not applicable.c See BD0-BD3, Banked Data registers 0-3 on page 7-150.

0x14 RW

0x18 RW

0x1C RW

0x20 IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED See MBT, Memory Barrier Transfer register on 
page 7-158.
The entries in this row only apply if the implementation 
includes the Barrier Operation Extension.
Otherwise, this register is reserved, RES0.

0x24 - 0xEC RES0 - Reserved

0xF0 RO IMPLEMENTATION DEFINED See BASE, Debug Base Address register on page 7-147.
The entries in this row only apply if the implementation 
includes the Large Physical Address Extension.b

Otherwise, this register is reserved, RES0.

0xF4 RO IMPLEMENTATION DEFINED See CFG, Configuration register on page 7-153.

0xF8 RO IMPLEMENTATION DEFINEDd See BASE, Debug Base Address register on page 7-147.

0xFC RO IMPLEMENTATION DEFINEDd See IDR, Identification Register on page 6-124.

a. Bits [1:0] of the register address are always 0b00.
b. When the MEM-AP implementation includes the Large Physical Address Extension, the location holds the most-significant word of the 

64-bit register.
c. These registers cannot be read until the memory access has completed. Therefore they do not have reset values.
d. The register descriptions give details of the reset values of some bits of these registers.
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7.6 MEM-AP register descriptions
This section describes each of the required MEM-AP registers. Table 7-6 on page 7-146 shows these registers, and 
indexes the full register descriptions in this section. The following subsections describe the registers:
• BASE, Debug Base Address register.
• BD0-BD3, Banked Data registers 0-3 on page 7-150.
• CFG, Configuration register on page 7-153.
• CSW, Control/Status Word register on page 7-154.
• DRW, Data Read/Write register on page 7-156.
• MBT, Memory Barrier Transfer register on page 7-158.
• TAR, Transfer Address Register on page 7-158.

7.6.1 BASE, Debug Base Address register

The BASE register attributes are:

Purpose The BASE register provides an index into the connected memory-mapped resource. This index 
value points to one of the following:
• The start of a set of debug registers.
• A ROM table that describes the connected debug components.

Configurations 

A MEM-AP register. The BASE register is:

• A 64-bit register in a MEM-AP implementation that includes the extension described in 
MEM-AP Large Physical Address Extension on page 7-143.

• Otherwise, a 32-bit register.

If the bus supports both Secure and Non-secure address spaces, the BASE register is defined to be 
a Non-secure address. Whether the ROM tables are also accessible in the Secure address space is 
IMPLEMENTATION DEFINED.

CSW.{Prot,Type} must reset to an access type that is suitable for accessing ROM tables.

Attributes The BASE register is:

• A read-only register.

• In a MEM-AP implementation that does not include the Large Physical Address Extension, 
a 32-bit register at offset 0xF8 in the MEM-AP register space. This means it is the third 
register in the last register bank of the MEM-AP register space, bank 0xF.

• In a MEM-AP implementation that includes the Large Physical Address Extension, a 64-bit 
register in the MEM-AP register space, with:
— The least-significant word of the register at offset 0xF8.
— The most-significant word of the register at offset 0xF0.

Caution
 In the 64-bit register implementation, the two words of the register are not contiguous in 

memory.

Note
 Early implementations of Debug Access Ports had different implementations of the Debug Base Address register, 
described in Legacy format of the Debug Base Address Register on page 7-150. The legacy format is a 32-bit register 
at offset 0xF8.
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The BASE register bit assignments are:

BASEADDR[63:32], bits[31:0] of word at offset 0xF0, 64-bit register only 

When the BASE register is implemented as a 64-bit register, bits[63:32] of the address offset, in the 
memory-mapped resource, of the start of the debug register space or a ROM table address. 

For more information, see The BASEADDR field on page 7-149.

When the BASE register is implemented as a 32-bit register, this memory location is reserved, RES0.

BASEADDR[31:12], bits[31:12] of word at offset 0xF8 

Bits [31:12] of the address offset, in the memory-mapped resource, of the start of the debug register 
space or a ROM table address. See The BASEADDR field on page 7-149. Bits [11:0] of the address 
offset are 0x000.

Bits[11:2] of word at offset 0xF8 

Reserved, RES0.

Format, bit[1] of word at offset 0xF8 

Base address register format.

This bit is RAO, indicating the ARM Debug Interface v5 format.

Note
 This bit is RAZ in one of the legacy Debug Base Address register formats, see Legacy format of the 

Debug Base Address Register on page 7-150.

Entry present, bit[0] of word at offset 0xF8 

This field indicates whether a debug entry is present for this MEM-AP:

0 No debug entry present.

1 Debug entry present.

Note
 Legacy format of the Debug Base Address Register on page 7-150 includes a description of the 

legacy format of the BASE register when there is no debug entry present.

When BASE is implemented as a 64-bit register, it can specify any address in a 64-bit physical address (PA) space. 
However:
• ROM tables support only 32-bit signed offset values.
• ARMv7-A processors with the MMU disabled, and ARMv7-R, ARMv6-M and ARMv7-M processors can 

access only a 32-bit PA space.

Therefore, ARM recommends that all debug components:
• Are located in the bottom 4GB of the PA space.
• Are located in one 2GB half of that address space.

BASEADDR[31:12]

31 12 11 2 0

Reserved, RES0 1 P

1

Format

Offset

0xF0 BASEADDR[63:32]

31 0

0xF8

†

† 64-bit register implementation only. When BASE is a 32-bit register, location is reserved, RES0.
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The BASEADDR field

The BASEADDR field defines the BaseAddress, in the debug component memory map, of the description of the 
debug component or components to which the ADIv5 DAP is connected, and:

• Bits[11:0] of the address are zero, and are not held in the BASE register.

• Bits[31:12] of the BASE register word at offset 0xF8 hold bits[31:12] of the address.

• When BASE is implemented as a 64-bit register, bits[31:0] of the BASE register word at offset 0xF0 hold 
bits[63:32] of this address.

The details of the memory area pointed to by this base address depend on the number of debug components 
connected to the ARM Debug Interface:

• If the ARM Debug Interface is connected to a single debug component, as in the system shown in Figure 1-3 
on page 1-28, BaseAddress is the base address of that component, and points to the start of the debug registers 
for that component.

A debug component can occupy more than one 4KB page of memory. If it does, BaseAddress points to the 
final 4KB page for the component.

• If the ARM Debug Interface is connected to more than one debug component, as in the system shown in 
Figure 1-6 on page 1-30, then BaseAddress must point to a ROM table. This ROM table gives the addresses 
of the other debug components connected to the interface. ROM tables are described in Chapter 10 ROM 
Tables.

A simple system, that contains only a single debug component, might be implemented with a separate ROM 
table, as shown in Figure 1-5 on page 1-29. In this case BaseAddress points to the ROM table.

Debugger issues

A debugger can always examine the four words starting at offset 0xFF0 from the base address, to discover 
information about the debug components connected to the MEM-AP. That is, it can check the four words starting at 
(BaseAddress + 0xFF0) for this information. This address points to the four Component ID registers, either for the 
single debug component or for the ROM table, with Component ID Register 0 at offset 0xFF0. Reading the DRW 
register with (BaseAddress + 0xFF0) in the TAR returns the value of this register. For more information about these 
registers see The Component ID Registers on page 9-187.The debugger can interpret the returned information to 
find the type of component connected. The component type is one of:
• ROM table.
• Debug component.
• Other.

The ARM Debug Interface v5 architecture specification does not specify requirements about the type of component 
pointed to by the BASE register.

A debugger must handle the following situations as non-fatal errors:

• BaseAddress is a faulting location.

• The four words starting at (BaseAddress + 0xFF0) are not valid Component ID registers.

• An entry in the ROM table points to a faulting location.

• An entry in the ROM table points to a memory block that does not have a set of four valid Component ID 
registers starting at offset 0xFF0.

Typically, a debugger issues a warning if it encounters one of these situations. However ARM recommends it 
continues operating. An example of an implementation that might cause errors of this type is a system with static 
BaseAddress or ROM table entries that enable entire subsystems to be disabled, for example by a tie-off input, 
packaging choice, fuse or similar.
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Debug component address map segmentation

When using 32-bit addressing, meaning BASE is implemented as a 32-bit register, if a MEM-AP implements a 
dedicated connection between the DAP and a set of debug registers, the address map of the connection must be 
aliased into two logical 2GB segments. This enables the device to distinguish two types of access:
• Debugger-initiated accesses address the logical segment with TAR[31]=1.
• System-initiated accesses, if permitted, address the logical segment with TAR[31]=0.

With such an implementation, BASEADDR[31] must be set to 1.

Even where system-initiated accesses are not permitted, ARM recommends that the debug component address space 
is segmented in this way, and that debugger-initiated accesses have TAR[31]=1.

Other systems might include IMPLEMENTATION DEFINED methods for signaling debugger accesses to system 
components.

The section Legacy format of the Debug Base Address Register is also important for debugger implementation.

Legacy format of the Debug Base Address Register

The legacy format for the Debug Base Address Register is described in the following subsections:
• Legacy format when no debug entries are present.
• Legacy format for specifying BASEADDR.

The legacy format is defined only for 32-bit addresses and so is not permitted for a MEM-AP that implements the 
Large Physical Address Extension.

Note
 This format must not be used for new ARM Debug Interface designs.

Legacy format when no debug entries are present

The legacy format of the BASE register when there are no debug entries present is:

NOTPRESENT, bits[31:0] 

This field has the value 0xFFFFFFFF, indicating that there are no debug entries.

Legacy format for specifying BASEADDR

When bit[1] of the BASE register is 0, the legacy format of the register holds the base address value. This format is:

BASEADDR, bits[31:12] 

Bits[31:12] of the base address. Bits[11:0] of the base address are zero.

For more information, see The BASEADDR field on page 7-149.

Bits[11:2] Reserved, RAZ.

FORMAT, bit[1] 

RAZ, indicating that this is the legacy 32-bit BASE register format.

Bit[0] Reserved, RAZ.

7.6.2 BD0-BD3, Banked Data registers 0-3

The BD0-BD3 register attributes are:

Purpose The Banked Data registers map APACC transactions directly to memory accesses, without having 
to change the value in the TAR. Together, the four Banked Data Registers give access to four words 
of the memory space, starting at the address specified in the TAR.
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Each Banked Data register holds a 32-bit data value:
• In write mode, a Banked Data register holds a value to write to memory.
• In read mode, a Banked Data register holds a value read from memory.

Configurations 

MEM-AP registers. The MEM-AP Large Data Extension, described in MEM-AP Large Data 
Extension on page 7-143, extends the behavior of these registers for assesses with CSW.Size set to 
doubleword.

Attributes The Banked Data registers are:

• At offsets 0x10, 0x14, 0x18, and 0x1C in the MEM-AP register space. 

• Read/write registers.

The bit assignments of a BDn register are:

Banked data, bits[31:0] 

Data value of the current transfer.

See Use of the BD registers with the MEM-AP Large Data Extension on page 7-152 for more 
information about BD register accesses in an MEM-AP that includes the Large Data Extension.

Auto address incrementing is not performed when a Banked Data register is accessed. The value of CSW.AddrInc 
has no effect on Banked Data register accesses.

Behavior is UNPREDICTABLE if a Banked Data register is accessed with the CSW.Size field set to any transfer size 
other value other than word, or doubleword if the MEM-AP Large Data Extension is implemented.

Table 7-7 shows how the four Banked Data registers map onto the address space when CSW.Size specifies word 
accesses. Bits [1:0] of the memory address are always 0b00.

An access to a Banked Data register initiates an access to the memory address shown in Table 7-7. The AP access 
does not complete until the memory access has completed. 

Table 7-7 Mapping of Banked Data registers onto memory addresses for word accesses

Register Offset

Memory address accessed 
if Large Physical Address 
Extension is not 
implemented

Memory address accessed 
if Large Physical Address 
Extension is implemented

BD0 0x10 TAR[31:4] << 4 TAR[63:4] << 4

BD1 0x14 (TAR[31:4] << 4) + 0x4 (TAR[63:4] << 4) + 0x4

BD2 0x18 (TAR[31:4] << 4) + 0x8 (TAR[63:4] << 4) + 0x8

BD3 0x1C (TAR[31:4] << 4) + 0xC (TAR[63:4] << 4) + 0xC
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Use of the BD registers with the MEM-AP Large Data Extension

For an MEM-AP implementation that includes the Large Data Extension, Table 7-8 shows how the four Banked 
Data registers map onto the address space when CSW.Size specifies doubleword accesses. Bits [2:0] of the memory 
address are always 0b000.

A debugger must:
• Access both registers of the pair.
• Access the lower-numbered register first.

The lower-numbered register holds the least-significant word. The higher-numbered register holds the 
most-significant word.

For a read, the first AP access initiates the memory access to the memory address shown in Table 7-8. The AP access 
does not complete until the memory access completes. 

For a write, the second AP access initiates the memory access to the memory address shown in Table 7-8. The AP 
access does not complete until the memory access completes. 

For example, if the Large Physical Address Extension is implemented, to read the doubleword value at (TAR[63:4] 
<< 4), a debugger must:
1. Read BD0, to obtain bits [31:0] of the doubleword. 
2. Read BD1, to obtain bits [63:32] of the doubleword.

When CSW.Size specifies doubleword accesses, for a sequence of two accesses to the BD registers:

• The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

• An access to CSW in the middle of the sequence terminates that sequence. The next access to a BD register 
is the first access of a new sequence.

If a write sequence is terminated, no memory write is initiated.

• The effect of not accessing the correct register first is UNPREDICTABLE.

• After accessing the first BD register, the effect of accessing any MEM-AP register other than the CSW or the 
correct second BD register is UNPREDICTABLE. This means the UNPREDICTABLE sequences include:
— Accessing BD1 and then accessing BD2.
— Two accesses to the same BD register.

Table 7-8 Mapping of Banked Data registers onto memory addresses for doubleword accesses

Register Offset

Memory address accessed 
if Large Physical Address 
Extension is not 
implemented

Memory address accessed 
if Large Physical Address 
Extension is implemented

Access 
Order

BD0 0x10 TAR[31:4] << 4 TAR[63:4] << 4 First

BD1 0x14 TAR[31:4] << 4 TAR[63:4] << 4 Second

BD2 0x18 (TAR[31:4] << 4) + 0x8 (TAR[63:4] << 4) + 0x8 First

BD3 0x1C (TAR[31:4] << 4) + 0x8 (TAR[63:4] << 4) + 0x8 Second
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7.6.3 CFG, Configuration register

The CFG register attributes are:

Purpose The CFG register provides information about how the MEM-AP implementation is configured. 
That is, it gives information about the implemented MEM-AP features.

Configurations 

A MEM-AP register. 

Attributes The CFG register is:

• At offset 0xF4 in the MEM-AP register space. 

• A read-only register.

The CFG register bit assignments are:

Bits[31:3] Reserved, RES0.

LD, bit[2] Large data. This bit indicates whether the MEM-AP implementation includes the Large Data 
Extension, that provides support for data items larger than 32-bits:
0 The implementation does not support data items larger than 32-bits.
1 The implementation includes the Large Data Extension, and therefore supports data 

items larger than 32-bits.
For more information, see MEM-AP Large Data Extension on page 7-143.

Note
 Regardless of the value of this bit, the MEM-AP must support word data items, and might support 

smaller data items. See the description of the CSW.Size field for more information about possible 
support for smaller data items.

LA, bit[1] Long address. This bit indicates whether the MEM-AP implementation includes the Large Physical 
Address Extension, that supports physical addresses of more than 32-bits:
0 The implementation support only physical addresses of 32-bits, or fewer bits.

Offsets 0x08 and 0xF0 in the MEM-AP register map are reserved.
1 The implementation supports physical addresses of more than 32-bits. This means:

• The TAR is a 64-bit register, at offsets 0x04 and 0x08 in the MEM-AP register 
map.

• The BASE register is a 64-bit register, at offsets 0xF8 and 0xF0 in the MEM-AP 
register map.

For more information, see MEM-AP Large Physical Address Extension on page 7-143.

BE, bit[0] Big-endian. ADIv5.2 obsoletes support for big-endian MEM-AP, and this bit must RAZ. For more 
information, see Big-endian support on page 7-137.

LALD

31 0

Reserved, RES0 BE

123
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7.6.4 CSW, Control/Status Word register

The CSW register attributes are:

Purpose 

The CSW register configures and controls accesses through the MEM-AP to or from a connected 
memory system.

Configurations 

A MEM-AP register.

Attributes 

The CSW register is:

• At offset 0x00 in the MEM-AP register space. 

• A read/write register, although some bits of the register are read-only.

The CSW register bit assignments 
are:

DbgSwEnable, bit[31] 

Debug software access enable.

DbgSwEnable must be ignored and treated as one if DeviceEn is set to 0.

The use of this flag is IMPLEMENTATION DEFINED, see Slave memory port and software access 
control on page 7-140.

This bit is optional. If not implemented, the bit is RES0.

{Prot, Type}, bits[30:24, 15:12] 

Bus access protection control. A debugger can use these fields to specify flags for a debug access. 
The permitted values and their significance are IMPLEMENTATION DEFINED, because they relate to 
the underlying bus architecture. For more information, see Implementing a MEM-AP on page 7-142.

These fields are optional. If not implemented, the fields are RES0.

SPIDEN, bit[23] 

Secure Privileged Debug Enabled. If this bit is implemented, the possible values are:
0 Secure accesses disabled.
1 Secure accesses enabled.

This bit is optional, and read-only. If not implemented, the bit is RES0.

Bits[22:16] Reserved, RES0.

Type, bits[15:12] 

See the entry for {Prot, Type}.

If not implemented, the field is RES0.

Type ‡

31 30 24 23 22 12 11 8 7 6 5 4 3 2 0

Prot ‡ Reserved
RES0 Mode Size

Reserved, RES0
AddrInc
DeviceEn
TrInProg

SPIDEN ‡DbgSwEnable ‡

‡ These fields are not required. Whether they 
are present is IMPLEMENTATION DEFINED.

1516
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Mode, bits[11:8] 

Mode of operation. The possible values of this bit are:

0000 Basic mode.

0001 Barrier support enabled. For more information, see MEM-AP Barrier Operation 
Extension on page 7-143.

All other values are reserved.

The set of modes supported is IMPLEMENTATION DEFINED. If the implementation supports only one 
mode, this field can be RO.

If this field is RW, the reset value of this field is UNKNOWN.

TrInProg, bit[7] 

Transfer in progress. This bit is set to 1 while a transfer is in progress on the connection to the 
memory system, and is set to 0 while the connection is idle.

After an ABORT operation, debug software can read this bit to check whether the aborted 
transaction completed.

This bit is read-only.

DeviceEn, bit[6] 

Device enabled. This bit is set to 1 when transactions can be issued through the MEM-AP.

This bit shows the value of the DEVICEEN signal, that is a control input to the DAP. If 
DEVICEEN is not implemented this bit is RAO.

For more information, see Enabling access to the connected debug device or memory system on 
page 7-132.

This bit is read-only.

AddrInc, bits[5:4] 

Address auto-increment and packing mode. This field controls whether the access address 
increments automatically on read and write data accesses through the DRW register. For more 
information see Auto-incrementing the Transfer Address Register (TAR) on page 7-132.

The reset value of this field is UNKNOWN.

Bit[3] Reserved, RES0.

Size, bits[2:0] Size of access. This field indicates the size of access to perform. It is IMPLEMENTATION DEFINED 
whether a MEM-AP supports access sizes other than 32-bits:

• If it does then the Size field is RW, and the field indicates the size of the access to perform. 
See Variable access size for memory accesses on page 7-136.
When this field is RW, its reset value is UNKNOWN.

• If it does not then this field is RO and it reads as 0b010 to indicate that only 32-bit accesses 
are supported.

If a MEM-AP implementation includes the Large Data Extension then:

• This field must be implemented as RW. 

• If a reserved value, or a value corresponding to an unsupported access size, is written to this 
field, then:
— A read of the field returns the value corresponding to a supported size.
— MEM-AP behavior corresponds to the value returned by a read of this field.

For more information about the extension, see MEM-AP Large Data Extension on page 7-143.
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7.6.5 DRW, Data Read/Write register

The DRW register attributes are:

Purpose The DRW register maps an AP access directly to one or more memory accesses. The AP access does 
not complete until the memory access, or accesses, complete.

Configurations 

A MEM-AP register. The MEM-AP Large Data Extension, described in MEM-AP Large Data 
Extension on page 7-143, modifies the behavior of this registers for accesses with CSW.Size set to 
a value larger than 0b010.

Attributes The DRW register is:

• At offset 0x0C in the MEM-AP register space. 

• A read/write register.

The DRW register is a 32-bit register:

• In write mode, the DRW holds the value to write for the current transfer to the address 
specified in the TAR.

• In read mode, the DRW holds the value read in the current transfer from the address specified 
in the TAR.

The DRW register bit assignments are:

Data, bits[31:0] 

Data value of the current transfer.

The size of memory access is controlled by the CSW.Size field. See Variable access size for memory accesses on 
page 7-136. 

See Use of the DRW register with the MEM-AP Large Data Extension for more information about DRW register 
accesses in an MEM-AP that includes the Large Data Extension.

If CSW.Size specifies an access size of less than 32-bits then a single access to the DRW might result in multiple 
memory accesses, depending on the values of CSW.AddrInc. See Packed transfers on page 7-138. 

After each access the TAR might be incremented depending on the value of CSW.AddrInc. See Auto-incrementing 
the Transfer Address Register (TAR) on page 7-132.

Use of the DRW register with the MEM-AP Large Data Extension

In an MEM-AP implementation that includes the Large Data Extension, the behavior of accesses to the DRW 
register depends on the memory access size defined by the CSW.Size field, as follows:

8-bit, 16-bit, or 32-bit accesses 

Behavior is identical to the behavior described in this section for a MEM-AP implementation that 
does not include the Large Data Extension.
7-156 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813



7 The Memory Access Port (MEM-AP) 
7.6 MEM-AP register descriptions
64-bit, 128-bit, and 256-bit accesses 

Software must make multiple accesses to the DRW to perform a single memory access, as Table 7-9 
shows. The Total number column shows the number of DRW accesses in the required DRW access 
sequence: 

The behavior depends on whether the access is a read or a write, as follows:

Read The first read of the DRW in a sequence initiates the memory access, and returns the 
least significant 32-bit word of the required data value. The AP access does not 
complete until the memory access completes.
Each subsequent DRW read in the sequence, up to the total shown in Table 7-9, returns 
the next 32-bit word of the required data, but does not initiate another memory access.

Write The first writes of the DRW in a sequence, except the last, specify 32-bit words of the 
data value to be written, starting with the least-significant word. These writes do not 
initiate a memory access.
The last write of the DRW specifies the most-significant 32-bit word of the data value, 
and initiates the memory access. The AP access does not complete until the memory 
access completes.

As this description indicates, each DRW access sequence:
• Consists of the number of DRW accesses specified in Table 7-9.
• Corresponds to a single memory access.

Within such a DRW access sequence:

• The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

• An access to CSW in the middle of the sequence terminates that sequence. The next access 
to the DRW register is the first access of a new sequence.
If a write sequence is terminated, no memory write is initiated.

• After the first DRW access of the sequence, the effect of accessing any MEM-AP register 
other than the CSW or the DRW is UNPREDICTABLE.

Table 7-9 Number of DRW accesses required for different CSW.Size values

CSW.Size Memory access size Total number of DRW accesses required

0b011 64-bit 2

0b100 128-bit 4

0b101 256-bit 8
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7.6.6 MBT, Memory Barrier Transfer register

The MBT register attributes are:

Purpose The MBT register generates a barrier operation on the bus. If the Barrier Operation Extension is not 
implemented, this register is reserved, RES0.

Configurations 

A MEM-AP register, implemented only if the MEM-AP implementation includes the extension 
described in MEM-AP Barrier Operation Extension on page 7-143.

Usage constraints 

If CSW.Mode is set to a value other than 0b0001, writes to this register are ignored.

Attributes The MBT register is at offset 0x20 in the MEM-AP register space. 

Other properties of the register are IMPLEMENTATION DEFINED.

The definition of this register is IMPLEMENTATION DEFINED.

7.6.7 TAR, Transfer Address Register

The TAR attributes are:

Purpose The TAR holds the memory address to be accessed.

Configurations 

A MEM-AP register. The TAR is:

• A 64-bit register in a MEM-AP implementation that includes the extension described in 
MEM-AP Large Physical Address Extension on page 7-143.

• Otherwise, a 32-bit register.

Attributes The TAR is:

• A RW register.

• In a MEM-AP implementation that does not include the Large Physical Address Extension, 
a 32-bit register at offset 0x04 in the MEM-AP register space. 
The reset value of this register is UNKNOWN.

• In a MEM-AP implementation that includes the Large Physical Address Extension, a 64-bit 
register in the MEM-AP register space, with:

— The least-significant word of the register at offset 0x04.
The reset value of this word is UNKNOWN.

— The most-significant word of the register at offset 0x08.
The reset value of this word is 0x00000000.

The TAR bit assignments are:

Address[31:0], bits[31:0] of the register word at offset 0x08 

Bits[31:0] of the memory address for the current transfer.

Address[63:32]

31 0

Offset

0x08 Address[31:0]

31 0

0x0C
†

† 64-bit register implementation only. When the TAR is a 32-bit register, location is reserved, RES0.
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Address[63:32], bits[31:0] of the register word at offset 0x0C, Large Physical Address Extension 

Bits[63:32] of the memory address for the current transfer.

If the MEM-AP implementation does not include the Large Physical Address Extension, this 
register word is RES0.

The address held in the TAR represents an address in the memory system to which the MEM-AP is connected. It is 
not an address within the MEM-AP.

Depending on whether the MEM-AP implementation includes the Large Physical Address Extension, TAR is either:
• A 64-bit register, TAR[63:0].
• A 32-bit register, TAR[31:0].

When using the DRW, the TAR specifies the memory address to access:

• If the MEM-AP does not support accesses smaller than word then TAR[1:0] can be implemented as RAZ/WI.

• The contents of the TAR can be incremented automatically on a successful DRW access, see 
Auto-incrementing the Transfer Address Register (TAR) on page 7-132.

When accessing memory through BD0-BD3, Banked Data registers 0-3 on page 7-150, bits [3:0] of the TAR are 
ignored, and TAR[63:4] or TAR[31:4] specifies the base address of the 16-byte block of memory that can be 
accessed.
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Chapter 8 
The JTAG Access Port (JTAG-AP)

This chapter describes the implementation of the JTAG Access Port (JTAG-AP), and how a JTAG-AP provides a 
Debug Port connection to one or more JTAG components. The JTAG-AP is an optional component of a Debug 
Access Port.

This chapter contains the following sections:
• Overview of the JTAG Access Port (JTAG-AP) on page 8-162.
• Operation of the JTAG-AP on page 8-166.
• The JTAG Engine Byte Command Protocol on page 8-169.
• JTAG-AP register summary on page 8-176.
• JTAG-AP register descriptions on page 8-177.

Note
 Chapter 6 The Access Port (AP) gives additional information about APs.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-161
ID080813 Non-Confidential



8 The JTAG Access Port (JTAG-AP) 
8.1 Overview of the JTAG Access Port (JTAG-AP)
8.1 Overview of the JTAG Access Port (JTAG-AP)
The JTAG Access Port is an optional component of a Debug Access Port (DAP). It enables up to eight legacy 
IEEE 1149.1 JTAG scan chains to be connected to the DAP. Each scan chain can contain any number of TAPs, 
however ARM recommends that only one TAP is connected to each scan chain.

An external debugger accesses a JTAG component, connected to a JTAG-AP, through a JTAG scan chain. The 
debugger accesses this scan chain using APACC accesses to registers in the JTAG-AP. A debugger also has to access 
JTAG-AP registers to control the JTAG-AP, or to obtain status or identification information from the JTAG-AP. 

8.1.1 Selecting and accessing the JTAG-AP

Figure 8-1 shows the implementation of a JTAG-AP, and how the JTAG-AP connects the DP to up to eight JTAG 
devices. APACC accesses to the DP are passed to the JTAG-AP.

The method of selecting an AP, and selecting a specific register within the selected AP, is the same for MEM-APs 
and JTAG-APs. This is summarized in Selecting and accessing an AP on page 6-123.

Figure 8-1 JTAG-AP connecting the DP to JTAG devices
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8.1.2 Logical structure of the JTAG-AP

A JTAG-AP comprises:

• The JTAG Engine. This is the main processing component of the JTAG-AP. It:
— Interprets a sequence of command bytes from the Command FIFO.
— Drives standard JTAG signals to the JTAG Port Multiplexer.
— Receives the TDO signal from the Port Multiplexer.
— Generates a response, that it passes to the Response FIFO.

• The JTAG Port Multiplexer. This multiplexes up to eight JTAG ports to the JTAG Engine. In addition to 
forwarding the standard JTAG signals to and from each port, it provides additional control and status signals 
for each port.

Note
 The Port Multiplexer also supports the RTCK (return clock) extension to the JTAG protocol, enabling the 

JTAG scan chains to be self-timed. The JTAG signals from and to the JTAG-AP are asynchronous to the 
Debug Port signals.

• Byte Command and Response FIFOs. These enable efficient use of the JTAG Engine.

• The JTAG-AP registers. These can be considered in three groups:
— An Identification Register.
— Control and status registers.
— FIFO access registers.

Figure 8-2 on page 8-164 shows this JTAG-AP structure. 
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Figure 8-2 Structure of the JTAG Access Port (JTAG-AP)
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 • The Response FIFO must be 7 bytes deep.

• The Command FIFO must be at least 4 bytes deep. Although the Command FIFO might be larger than this, 
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8.1.3 JTAG port signals

The signal bundle between the JTAG Port Multiplexer and each implemented JTAG port includes:
• The standard IEEE 1149.1 JTAG signals.
• The non-IEEE 1149.1 extension RTCK signal.
• Additional port control and status signals.

Table 8-1 gives the full signal list. This list applies to each implemented port.

Table 8-1 JTAG Access Port JTAG port signals

Signal Directiona Description Notes

TCK Out Test Clock JTAG IEEE 1149.1 standard signals.

TMS Out Test Mode Select

TDI Out Test Data In

TDO In Test Data Out

TRST* Out Test Reset Active LOW JTAG IEEE 1149.1 standard signal.

RTCK In Return Clock JTAG extension signal, not specified by 
IEEE 1149.1.
If the connected JTAG device has no Return Clock, 
RTCK must be synthesized for the port.
Implementation of the RTCK signal is 
IMPLEMENTATION DEFINED.

nSRSTOUT Out Subsystem Reset Active LOW.

SRSTCONNECTED In Subsystem Reset 
Connected

Tie-off configuration signals to the JTAG Port 
Multiplexer.

PORTCONNECTED In Port Connected

PORTENABLED In Port Enabled Can be deasserted by the JTAG subsystem, for 
example when the connected TAP powers down.

a. Signal directions are given relative to the JTAG Port Multiplexer in the JTAG-AP.
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8.2 Operation of the JTAG-AP
The JTAG-AP communicates with the device using the standard JTAG signals and scan chains. This operation is 
controlled by the JTAG Engine. The Engine includes a serializer that takes TDI data out of the Command FIFO and 
returns TDO data to the Response FIFO, see Figure 8-2 on page 8-164.

The external debugger:

1. Encodes JTAG commands and data into the JTAG Engine Byte Command Protocol, described in The JTAG 
Engine Byte Command Protocol on page 8-169.

2. Writes to the BWFIFOn registers, to transfer the encoded JTAG Engine commands and data to the JTAG 
Command FIFO.

3. Reads from the BWFIFOn registers. These reads return JTAG TDO data that is collected in response to the 
encoded JTAG Engine commands.

4. Decodes the actual TDO data from the response data.

The JTAG Engine provides the connection between stages 2 and 3 of this process.

Note
 The JTAG-AP can connect to up to 8 JTAG devices. The debugger must write to the PSEL register to select the 
JTAG port or ports that are connected through the JTAG Port Multiplexer to the JTAG Engine. 

There is no direct coupling between the data transfers between:
• The data transfers between the debugger and the JTAG-AP.
• The data transfers between the debugger and the connected JTAG device.

In particular, the debugger does not have to send all the TDI data for a scan before it starts to read the TDO data 
from the scan, although it must have sent the complete command header. Indeed, for a long scan, the command and 
Response FIFOs might not be large enough for this approach to be possible.

For example:
1. The debugger writes two bytes to BWFIFO2, to specify:

a. A TDI_TDO scan, with 64 bits of TDI data.
b. The TDO data is to be returned to the debugger.

2. The debugger writes a word to BWFIFO4, containing the first 32-bits of TDI data.
3. The debugger reads a word from BRFIFO4, to obtain the first 32-bits of TDO data.
4. The debugger writes another word to BWFIFO4, with the next 32-bits of TDI data.
5. The debugger reads another word from BRFIFO4, to obtain the next 32-bits of TDO data.

This provides a very efficient encapsulation of the JTAG scan chain. However, as described in Stalling accesses on 
page 8-167, a read of BRFIFOn stalls if the requested data is not available. Therefore, if the device connected to the 
JTAG-AP has a slow clock then the debugger might want to write a number of bytes of TDI data before attempting 
to read the first byte of TDO data.

Operation of the JTAG-AP is described in more detail in The JTAG Engine Byte Command Protocol on page 8-169. 
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8.2.1 JTAG-AP register accesses and accesses to the JTAG scan chain

 APACC accesses to JTAG-AP registers can be divided into two groups:

• Register accesses that do not access the JTAG Engine FIFOs. This group comprises all accesses to the 
following registers, as shown in Figure 8-2 on page 8-164:
— CSW.
— PSEL.
— PSTA.
— IDR.

Accesses to these registers always complete immediately. These accesses do not require any communication 
with any connected JTAG component.

• Register accesses that access the JTAG Engine FIFOs. This group comprises all accesses to the following 
registers, as shown in Figure 8-2 on page 8-164:
— The Byte Response FIFO Registers, BRFIFO1 to BRFIFO4.
— The Byte Command FIFO Registers, BWFIFO1 to BWFIFO4.

These registers are described in BxFIFO1-BxFIFO4. Using these registers to access the JTAG state machine 
and JTAG scan chains is described in The JTAG Engine Byte Command Protocol on page 8-169.

Accesses to these registers can be stalled, see Stalling accesses.

Stalling accesses

A JTAG-AP can stall:

• Read accesses to the Byte Response FIFO Registers, BRFIFO1 to BRFIFO4, see Stalling Debug Port read 
accesses to the JTAG-AP.

• Write accesses to the Byte Command FIFO Registers, BWFIFO1 to BWFIFO4, see Stalling Debug Port 
write accesses to the JTAG-AP.

Stalling Debug Port read accesses to the JTAG-AP

The JTAG-AP can stall DP read accesses to the Byte Response FIFO Registers, BRFIFO1 to BRFIFO4. Depending 
which of these registers is targeted, a single register read transfers between one and four bytes of data from the byte 
Response FIFO. The register access stalls if the FIFO does not contain enough data. For example, if a DP initiates 
a read of the BRFIFO4 register, to transfer four bytes of data from the Response FIFO, and the FIFO only contains 
two bytes of data, the access stalls and remains stalled until there are four bytes of data available in the Response 
FIFO.

The DP can read the CSW register to find the number of bytes of data available in the Response FIFO. This value 
is held in the CSW.RFIFOCNT field. A read of the CSW always completes immediately.

Stalling Debug Port write accesses to the JTAG-AP

The JTAG-AP can stall DP write accesses to the Byte Command FIFO Registers, BWFIFO1 to BWFIFO4. 
Depending which of these registers is targeted, a single register write transfers between one and four bytes of data 
into the byte Command FIFO. The register access stalls if the FIFO does not contain enough free space to accept all 
of the write data. For example, if a DP initiates a write to the BWFIFO3 register, to transfer three bytes of data into 
the Command FIFO, when the FIFO has only one byte free, the access stalls and remains stalled until the Command 
FIFO is able to accept the three bytes of data.

The DP can read the CSW register to find the number of command bytes held in the Command FIFO and waiting 
to be processed by the JTAG Engine. This value is held in the CSW.WFIFOCNT field, and can calculate the number 
of free bytes in the FIFO. A read of the CSW always completes immediately.

8.2.2 Resetting connected JTAG devices or subsystems

Resets are triggered using:
• The TRST* signal for JTAG Test Resets.
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• The nSRSTOUT signal for subsystem resets.

These signals are controlled by the TRST_OUT and SRST_OUT bits of the CSW register. A JTAG test reset might 
have to be clocked out for a number of TCK cycles with TMS HIGH to generate the reset. For more information 
see Resetting JTAG devices on page 8-180.

8.2.3 Pushed transaction and transaction counter support

A JTAG-AP supports pushed transactions and sequences of transactions to the following registers only:
• PSTA.
• BxFIFO1-BxFIFO4.

For more information see:
• Pushed-compare and pushed-verify operations on page 2-36.
• The transaction counter on page 2-38.
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8.3 The JTAG Engine Byte Command Protocol
All JTAG commands, including TMS and TDI data, are written to the JTAG-AP Command FIFO through the 
interface provided by the four Byte Write FIFO Registers, BWFIFO1 to BWFIFO4. To provide high command 
packing, the JTAG commands are encoded as a byte protocol, and depending on which of the Byte Write FIFO 
registers is written to between one and four bytes can be written to the FIFO in a single operation. See The Byte 
Write FIFO Registers, BWFIFO1 to BWFIFO4 on page 8-177.

Data from the TDO signal from the JTAG Port Multiplexor is transferred to the JTAG-AP Response FIFO. The four 
Byte Read FIFO Registers provide an interface to the Response FIFO. See The Byte Read FIFO Registers, 
BRFIFO1 to BRFIFO4 on page 8-177.

In the JTAG Engine Byte Command Protocol, all commands are one byte (8-bits). Table 8-2 summarizes the 
commands, and the following sections describe them in more detail. Where appropriate, the command descriptions 
also describe the TDO data produced by the command, and how this is encoded in the Byte Read FIFOs.

8.3.1 The encoding of the TMS packet

The TMS packet is a single byte. The payload of the packet holds:
• Between one and five data bits to be sent on TMS.
• An indication of whether TDI is held at 0 or at 1 while these bits are sent.

While a TMS packet is being executed, no response is captured from TDO. The normal use of TMS packets is to 
move around the JTAG state machine. See The Debug TAP State Machine introduction on page 3-70.

Table 8-3 shows the possible encodings of a TMS packet.

When the JTAG Engine decodes a TMS packet, TDI is held at the value indicated by bit [6] while all of the TMS 
data bits are sent. If you have to send TMS bits with different TDI values then you must use multiple TMS packets.

Table 8-2 Summary of JTAG Engine Byte Command Protocol

Bits of the Command byte
Opcode For description see:

[7] [6] [5] [4] [3] [2] [1] [0]

0 Opcode payload TMS The encoding of the TMS packet.

1 0 0 Opcode payload TDI_TDO The encoding of the TDI_TDO packet on page 8-170.

1 0 1 X X X X X Reserved -

1 1 0 X X X X X Reserved -

1 1 1 X X X X X Reserved -

Table 8-3 TMS packet encodings

Command byte
Notes

[7] [6] [5] [4] [3] [2] [1] [0]

0 TDI 1 TMS[4] TMS[3] TMS[2] TMS[1] TMS[0] Five bits of TMS data.

0 TDI 0 1 TMS[3] TMS[2] TMS[1] TMS[0] Four bits of TMS data.

0 TDI 0 0 1 TMS[2] TMS[1] TMS[0] Three bits of TMS data.

0 TDI 0 0 0 1 TMS[1] TMS[0] Two bits of TMS data.

0 TDI 0 0 0 0 1 TMS[0] One bit of TMS data.
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The TMS data bits are sent LSB first. This means that in each row of Table 8-3 on page 8-169, TMS[0] is the first 
bit to be sent.

To send the sequence of TMS bits [1, followed by 1, followed by 0, followed by 1] while keeping TDI at 1, the 
TMS packet is as shown in Figure 8-3. As the diagram shows, this sequence of TMS signals takes four TCK cycles.

Figure 8-3 TMS packet example with TDI held at 1

To send the sequence of TMS bits [1, followed by 0] while keeping TDI at 0, the TMS packet is as shown in 
Figure 8-4. As shown in the diagram, this sequence of TMS signals takes two TCK cycles.

Figure 8-4 TMS packet example with TDI held at 0

8.3.2 The encoding of the TDI_TDO packet

A TDI_TDO packet is a multi-byte packet that is at least two bytes long. It comprises:
• The TDI_TDO opcode byte.
• A second byte, that contains:

— For short packets, of fewer than seven TDI bits, the packed TDI bits.
— Otherwise, the length of the packet.

• If required, between one and sixteen extra bytes containing the TDI bits.

The following subsections describe these bytes.

The TDI_TDO opcode byte, the first byte of the packet

This byte is the packet header. It indicates the start of a TDI_TDO packet, and contains information about the 
command sub-type. Figure 8-5 shows the format of this byte.

Figure 8-5 TDI_TDO first byte (opcode) format
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Bits [3:0] are control bits that define the TDI_TDO sub-type. Table 8-4 describes all the bits of the TDI_TDO packet 
first byte.

The TDI_TDO length byte, the second byte of the packet

There are two alternative formats for the second byte of the TDI_TDO packet:

Normal In this format, this byte specifies the length of the scan. This can be any value between 1 and 128 
bits.

This format is described in The normal format of the TDI_TDO length byte on page 8-172.

Packed The packed format can be used when the required scan is between one and six cycles long. In this 
format, this byte contains between one and six bits of TDI data. The length of the scan is determined 
by the number of bits of data provided.

This format is described in The packed format of the TDI_TDO length byte on page 8-172.

Table 8-4 TDI_TDO first byte (opcode) format

Bit Name Valuea Description

[7] TDI_TDO 1 The value of these bits indicates that this is the first byte of a TDI_TDO packet

[6] 0

[5] 0

[4] - SBZ Reserved, Should Be Zero.

[3] TMS - TMS value to use on the last cycle of the scan:
0 = TMS LOW on last cycle
1 = TMS HIGH on last cycle.
TMS is always LOW on all the earlier cycles of the scan.

[2] RTDO - Read TDO. This bit determines whether TDO values returned during the scan are captured and 
placed in the Response FIFO:
0 = Do not capture TDO
1 = Capture TDO.

Caution
 Do not set this bit to 1 if more than one JTAG port is selected and enabled. If you do, the TDO 
values captured are UNKNOWN.

[1] TDI - TDI value to use throughout the scan if UTDI bit is set to 1:
0 = hold TDI signal LOW throughout the scan
1 = hold TDI signal HIGH throughout the scan
The value of the TDI bit is ignored if UTDI is set to 0.

[0] UTDI - Use TDI bit. This bit determines whether the TDI bits to be used during the scan are supplied in 
the other bytes of the TDI_TDO packet, or whether the TDI bit, bit [1], specifies the TDI signal 
to use throughout the scan:
0 = TDI bits for the scan are supplied in the other bytes of the TDI_TDO packet.
1 = The TDI bit, bit [1], determines the TDI signal to use throughout the scan.
When this bit is set to 1, no TDI data is included in the TDI_TDO packetb.

a. Given for bits that have a fixed value for the TDI_TDO first byte.
b. When the Packed format is used for the second byte of the packet certain bits of that byte are designated as TDI data bits, however the value 

of these bits is ignored if UTI = 1, see The TDI_TDO length byte, the second byte of the packet. There is no advantage in using the packed 
format when UTDI = 1, but it is possible to do so.
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Note
 This format can be used when the UTDI bit in the first byte of the packet is set to 1. However, there 

is no advantage in using the packed format when UTDI =  1, because the normal format is easier to 
use, and the TDI_TDO packet is two bytes long whichever format is used.

The normal format of the TDI_TDO length byte

If bit [7] of the second byte of the TDI_TDO packet is zero, the byte is in the normal length byte format. In this 
format, bits [6:0] of the byte give the length in bits of the required scan, minus one. This format is shown in 
Figure 8-6.

Figure 8-6 TDI_TDO second byte (length byte), normal format

When the TDI_TDO length byte is in the normal format:

• If the UTDI bit of the first byte of the TDI_TDO packet is 0, the TDI data for the scan is packed into 
additional bytes of the packet, that follow the length byte. See The data bytes, the third and subsequent bytes 
of the packet on page 8-173 for more information.

• If the UTDI bit of the first byte of the TDI_TDO packet is 1 then no TDI data is required for the scan, and 
the length byte is the last byte of the packet. Whenever the UTDI bit is set to 1, the TDI_TDO packet is always 
two bytes long.

See The TDI_TDO opcode byte, the first byte of the packet on page 8-170 for more information about the UTDI bit.

The packed format of the TDI_TDO length byte

If bit [7] of the second byte of the TDI_TDO packet is one, the byte is in the packed length byte format. In this 
format:

• The length of the required scan is implied by the data in bits [6:0] of the length byte, the second byte of the 
TDI_TDO packet.

• If the UTDI bit of the first byte of the TDI_TDO packet is 0, the TDI data for the scan is packed into the least 
significant bits of the length byte.

• The second byte is the last byte of the TDI_TDO packet, meaning the packet is two bytes long.

Note
 The packed format of the TDI_TDO length byte can only be used if the required scan is of six bits or less.

Figure 8-7 on page 8-173 shows the permitted contents of the length byte when the packed format is used.

[7] [5] [4] [3] [2] [1] [0]

0 (Length of scan) - 1
(Possible scan length of 1 to 128 bits)

[6]

Indicates Normal format
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Figure 8-7 TDI_TDO second byte (length byte), packed format

The packed format for the TDI_TDO second byte is summarized in Table 8-5.

When the TDI_TDO length byte is in the packed format:

• If the UTDI bit of the first byte of the TDI_TDO packet is 0, the data packed into bits [5:0] of the length byte 
determines the value of the TDI signal during the scan. Bit [0] of the length byte always holds TDI[0], 
meaning that this bit determines the TDI signal value for the first TCK cycle of the scan.

• If the UTDI bit of the first byte of the TDI_TDO packet is 1, the data packed into bits [5:0] of the length byte 
only indicates the length of the required scan, and does not affect the value of the TDI signal during the scan. 
For example, if the complete length byte is 0b10001XXX, referring to Figure 8-7 shows that a scan of 3 bits is 
required. The TDI signal value, for all three bits, is the TDI value from the first byte of the packet, see 
Table 8-3 on page 8-169.

See The TDI_TDO opcode byte, the first byte of the packet on page 8-170 for more information about the UTDI bit.

The data bytes, the third and subsequent bytes of the packet

The TDI_TDO packet is more than two bytes long only when both of the following are true:

• The length byte, the second byte of the packet, is in the normal format. See The normal format of the 
TDI_TDO length byte on page 8-172.

• The UTDI bit of the first byte of the packet is 0. See The TDI_TDO opcode byte, the first byte of the packet 
on page 8-170.

In this case:
• Bits[6:0] of the length byte contain the required scan length minus one, in bits.

0 100001 TDI[0]

0 10001 TDI[1] TDI[0]

0 1001 TDI[1]TDI[2] TDI[0]

0 101 TDI[1]TDI[2]TDI[3] TDI[0]

01 1 TDI[1]TDI[2]TDI[3]TDI[4] TDI[0]

1 TDI[1]TDI[2]TDI[3]TDI[4]TDI[5]

[7] [5] [4] [3] [2] [1] [0]

1 TDI[0]

[6]

Indicates Packed format

Scan length = 6 bits

Scan length = 5 bits

Scan length = 4 bits

Scan length = 3 bits

Scan length = 2 bits

Scan length = 1 bit

Table 8-5 TDI_TDO second byte (length byte), packed format

Scan length Must be zero bits Data start flag TDI data for scana

a. When the UTDI bit of the first byte of the TDI_TDO packet is 1, the values of these bits are ignored.

6 bits None Bit [6] = 1 Bits [5:0]

5 bits Bit [6] = 0 Bit [5] = 1 Bits [4:0]

4 bits Bits [6:5] = 0b00 Bit [4] = 1 Bits [3:0]

3 bits Bits [6:4] = 0b000 Bit [3] = 1 Bits [2:0]

2 bits Bits [6:3] = 0b0000 Bit [2] = 1 Bits [1:0]

1 bit Bits [6:2] = 0b00000 Bit [1] = 1 Bit [0]
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• The TDI data for the scan is packed into additional bytes of the packet.

The packing of TDI data uses as few bytes as possible, and the least significant bit of TDI data, TDI[0], is always 
bit [0] of the first data byte. This is the TDI signal value for the first TCK cycle of the scan.

The number of data bytes required is the length of the scan divided by eight, rounded up to an integer value. In the 
last data byte, any bits that are not required for TDI data must be set to 0. For example, a scan of 21 cycles requires 
three data bytes, giving a total TDI_TDO packet size of five bytes. Figure 8-8 shows the formatting of the complete 
TDI_TDO packet for this example.

Figure 8-8 TDI_TDO formatting example. Complete packet for a scan of 21 TCK cycles

In Figure 8-8:

Byte 1, the opcode byte 

• Bits[7:5] are the TDI_TDO opcode, 0b100.

• Bit[3] is the TMS bit. The value of 1 indicates that TMS must be HIGH for the last cycle of 
the scan.

• Bit[2] is the RTDO bit. The value of 1 indicates that TDO data must be captured during the 
scan.

Byte 2, the length byte 

• Bit[7] = 0 indicates that this length byte is in normal format.

• Bits[6:0] give the value ((length of scan) - 1). This field has the value 0b0010100, which is 20, 
meaning the scan length is 21 bits.

Bytes 3 and 4, the first and second data bytes 

These bytes contain TDI[15:0], the TDI data for the first 16 cycles of the scan.

Byte 5, the third data byte 

This byte contains TDI[20:16], the TDI data for the final five cycles of the scan. Any bits that are 
not required for TDI data must be set to 0, so bits [7:5] =  0b000.

8.3.3 Response bytes from a TDI_TDO packet

If the Read TDO (RTDO) bit, bit [2], of a TDI_TDO packet header is set to 1, then the value of the TDO signal is 
captured for each TCK cycle of the scan. This captured TDO data is packed into bytes, and each byte is inserted 
into the Response FIFO as soon as it is completed.

Figure 8-8 shows a TDI_TDO packet with RTDO = 1.

Caution
 If more than one JTAG port is selected and enabled, the returned TDO values are UNKNOWN.

The number of bytes of TDO data inserted in the Response FIFO is the scan length divided by eight, rounded up to 
an integer value. When the scan length is not an exact multiple of 8, zero bits are inserted to pack the last byte of 
returned data.

The scan stalls if the Response FIFO is full when a byte of TDO data is ready for insertion.

0 TDI[20]00 TDI[17]TDI[18]TDI[19] TDI[16]

TDI[14]TDI[15] TDI[13] TDI[9]TDI[10]TDI[11]TDI[12] TDI[8]

TDI[6] TDI[1]TDI[2]TDI[3]TDI[4]TDI[5]TDI[7] TDI[0]

00 0 0101 0

0 01100

[7] [5] [4] [3] [2] [1] [0]

1 0

[6]

TDI_TDO opcode, with TMS = 1 and RTDO = 1    

Length byte, normal format (bit [7] = 0)

First data byte

Second data byte

Third data byte
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Figure 8-9 shows the formatting of the TDO data bytes transferred to the Response FIFO for a scan of 21 TCK 
cycles where TDO capture is enabled.

Figure 8-9 TDI_TDO response data formatting example. Scan of 21 TCK cycles

If the RTDO bit is set to 0 then no response bytes are placed in the Response FIFO.

See The TDI_TDO opcode byte, the first byte of the packet on page 8-170 for details of the Read TDO (RTDO) bit.

0 TDO[20]00 TDO[17]TDO[18]TDO[19] TDO[16]

TDO[14]TDO[15] TDO[13] TDO[9]TDO[10]TDO[11]TDO[12] TDO[8]

TDO[6] TDO[1]TDO[2]TDO[3]TDO[4]TDO[5]

[7] [5] [4] [3] [2] [1] [0]

TDO[7] TDO[0]

[6]

First data byte transferred to Response FIFO

Second data byte transferred to Response FIFO

Third data byte transferred to Response FIFO
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8.4 JTAG-AP register summary
Table 8-6 lists the JTAG-AP registers, and indicates where they are described in detail. This table shows the memory 
map of the JTAG-AP registers, and includes the Identification Register that is described in Chapter 6 The Access 
Port (AP).

All of the registers listed in Table 8-6 are required in every JTAG-AP implementation.

Reserved addresses in the register memory map are RES0.

Using the Debug Port to access Access Ports on page 1-24 explains how to access AP registers.

Table 8-6 Summary of JTAG Access Port (JTAG-AP) registers

Address Access Reset value Description, see

0x00 RW a CSW

0x04 RW UNKNOWN PSEL

0x08 RW 0x00000000 PSTA

0x0C RES0 - Reserved

0x10 RO b Read, single entry

BxFIFO1-BxFIFO4

WO - Write, single entry

0x14 RO b Read, two entries

WO - Write, two entries

0x18 RO b Read, three entries

WO - Write, three entries

0x1C RO b Read, four entries

WO - Write, four entries

0x20 - 0xF8 RES0 - Reserved

0xFC RO a IDR

a. See the register description.
b. Accesses to Byte FIFO Read Registers stall until data is available in the FIFO. Therefore they do not have reset values.
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8.5 JTAG-AP register descriptions
This section describes each of the JTAG-AP registers. Table 8-6 on page 8-176 shows these registers, and indexes 
the full register descriptions in this section. The following subsections describe these registers:
• The Byte FIFO registers, BRFIFO1 to BRFIFO4 and BWFIFO1 to BWFIFO4.
• CSW, Control/Status Word Register on page 8-179.
• PSEL, Port Select register on page 8-181.
• PSTA, Port Status Register on page 8-183.

8.5.1 The Byte FIFO registers, BRFIFO1 to BRFIFO4 and BWFIFO1 to BWFIFO4

The JTAG-AP engine JTAG protocol is byte encoded. The Byte FIFO registers:

• Enable one, two, three or four bytes to be written in parallel to the Command FIFO, by writing to a BWFIFOn 
register.

• Enable one, two, three or four bytes to be read in parallel from the Response FIFO, by reading from a 
BRFIFOn register.

The BRFIFOn and BWFIFOn registers are mapped to the same JTAG-AP register addresses, with the BRFIFOn 
registers being accessed on read operations and the BWFIFOn registers being accessed on write operations.

The registers are organized so that the low order bits of the register address indicate the number of bytes of data to 
be written to, or read from, the FIFO:

• The BRFIFO1 and BWFIFO1 registers are at offset 0x10 in the JTAG-AP register space, and transfer a single 
data byte from or to a FIFO.

• The BRFIFO2 and BWFIFO2 registers are at offset 0x14 in the JTAG-AP register space, and transfer two data 
bytes from or to a FIFO.

• The BRFIFO3 and BWFIFO3 registers are at offset 0x18 in the JTAG-AP register space, and transfer three 
data bytes from or to a FIFO.

• The BRFIFO4 and BWFIFO4 registers are at offset 0x1C in the JTAG-AP register space, and transfer four 
data bytes from or to a FIFO.

The JTAG Engine Byte Command protocol used for the commands and responses is described in The JTAG Engine 
Byte Command Protocol on page 8-169.

The Byte Read FIFO Registers, BRFIFO1 to BRFIFO4

Figure 8-10 shows the register bit assignments for the Byte Read FIFO Registers.

Figure 8-10 Bit assignments for the Byte Read FIFO Registers, BRFIFO1 to BRFIFO4

An AP transaction that reads more responses than are available in the Response FIFO stalls until enough data is 
available to match the request. Before initiating an AP transaction to read from the Response FIFO you can read the 
CSW.RFIFOCNT field to check the number of response bytes available.

The Byte Write FIFO Registers, BWFIFO1 to BWFIFO4

Figure 8-11 on page 8-178 shows the register bit assignments for the Byte Write FIFO Registers.

First response byteSecond response byteThird response byteFourth response byte

First response byteSecond response byteThird response byteRAZ

First response byteSecond response byteRAZRAZ

First response byteRAZRAZRAZ
31 24 23 16 15 8 7 0

BRFIFO1

BRFIFO2

BRFIFO3

BRFIFO4
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 8-177
ID080813 Non-Confidential



8 The JTAG Access Port (JTAG-AP) 
8.5 JTAG-AP register descriptions
Figure 8-11 Bit assignments for the Byte Write FIFO Registers, BWFIFO1 to BWFIFO4

An AP transaction that writes more commands than there is space for in the Command FIFO stalls until there is 
enough space in the Command FIFO. Space in the Command FIFO is freed as commands are executed by the JTAG 
Engine. Before initiating an AP transaction to write to the Command FIFO you can read the CSW.WFIFOCNT field 
to check the number of commands already present in the Command FIFO, and from this value you know the number 
of additional commands you can write to the FIFO.

First command byteSecond command byteThird command byteFourth command byte

First command byteSecond command byteThird command byteIgnored

First command byteSecond command byteIgnoredIgnored

First command byteIgnoredIgnoredIgnored
31 24 23 16 15 8 7 0

BWFIFO1

BWFIFO2

BWFIFO3

BWFIFO4
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8.5.2 CSW, Control/Status Word Register

The CSW register attributes are:

Purpose 

The CSW register configures and controls transfers through the JTAG interface.

Configurations 

A JTAG-AP register.

Attributes 

The CSW register is:

• At offset 0x00 in the JTAG-AP register space.

• A read/write register, although some bits of the register are read-only.

• See the field descriptions for information about the reset value.

The CSW register bit assignments are:

Figure 8-12 JTAG-AP Control/Status Word Register, CSW, bit assignments

SERACTV, bit[31] 

JTAG Engine active. This bit is read-only. The possible values of this flag are:

0 JTAG Engine is inactive if WFIFOCNT is 0.

1 JTAG Engine is processing commands from the Command FIFO.

The JTAG Engine is only guaranteed to be inactive if both SERACTV and WFIFOCNT are zero. 
The reset value of this bit is 0.

WFIFOCNT, bits[30:28] 

Command FIFO outstanding byte count. This field is read-only. Gives the number of command 
bytes held in the Command FIFO that have yet to be processed by the JTAG Engine. The reset value 
is of this field 0b000.

Bit[27] Reserved, RES0.

RFIFOCNT, bits[26:24] 

Response FIFO outstanding byte count. This field is read-only. Gives the number of bytes of 
response data available in the Response FIFO. The reset value of this field is 0b000.

Bits[23:4] Reserved, RES0.

PORTCONNECTED, bit[3] 

Selected ports connected. The value of this bit is the logical AND of the PORTCONNECTED 
signals from all currently-selected ports. This bit is read-only. The reset value always depends on 
the state of the connected signals when the register is read.

31 30 24 23 4 3 2 0

Reserved
RES0

PORTCONNECTED
RFIFOCNT

28 27 26 1

Reserved, RES0
WFIFOCNT
SERACTV

SRSTCONNECTED
TRST_OUT
SRST_OUT
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SRSTCONNECTED, bit[2] 

Selected ports reset connected. The value of this bit is the logical AND of the SRSTCONNECTED 
signals from all currently-selected ports. This bit is read-only. The reset value always depends on 
the state of the connected signals when the register is read.

TRST_OUT, bit[1] 

This bit specifies the signal to drive out on the TRST* signal for the currently-selected port or ports. 
The TRST* signal is active LOW, when this bit is set to 1 the TRST* output is LOW. This bit is 
read-only. This bit does not self-reset, it must be cleared to 0 by a software write to this register. The 
reset value is 0.

0 Deassert TRST* HIGH.

1 Assert TRST* LOW.

For more information about the use of this bit see Resetting JTAG devices.

SRST_OUT, bit[0] 

This bit specifies the signal to drive out on the nSRSTOUT signal for the currently-selected port or 
ports. The nSRSTOUT signal is active LOW, when this bit is set to 1 the nSRSTOUT output is 
LOW. This bit does not self-reset, it must be cleared to 0 by a software write to this register. The 
reset value is 0.

0 Deassert nSRSTOUT HIGH.

1 Assert nSRSTOUT LOW.

Resetting JTAG devices

Although the TRST_OUT bit specifies the value to be driven on the TRST* signal, writing to this bit only causes 
the signal to change. It might be necessary to clock the devices connected to the selected JTAG port or ports, by 
TCK, to enable the devices to recognize the change on TRST*. This means that the normal process to perform a 
Test Reset of the selected JTAG ports is:

1. Write 1 to the CSW.TRST_OUT bit, to specify that TRST* must be asserted LOW.

2. Drive a sequence of at least five TMS = 1 clocks from the JTAG Engine. You can do this by issuing the 
command 0b00111111 to the JTAG Engine. This sequence guarantees the TAP enters the Test-Logic/Reset 
state, even if has no TRST* connection.

3. Write 0 to the CSW.TRST_OUT bit, so that the TRST* signal is HIGH on subsequent TCK cycles.

If the JTAG connection is not clocked in this way while TRST* is asserted LOW then some or all TAPs might not 
reset.
8-180 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813



8 The JTAG Access Port (JTAG-AP) 
8.5 JTAG-AP register descriptions
8.5.3 PSEL, Port Select register

The PSEL register attributes are:

Purpose 

The PSEL register selects one or more JTAG ports.

Configurations 

A JTAG-AP register.

Attributes 

The PSEL register is:

• At offset 0x04 in the JTAG-AP register space.

• A read/write register.

• Reset value is UNKNOWN.

The PSEL register bit assignments are:

Figure 8-13 JTAG-AP Port Select Register, PSEL, bit assignments

Bits[31:8] 

Reserved, RES0.

PSELn, bit[n], for n = 0 to 7 

Select control for JTAG port n. If JTAG port n is not connected to the JTAG-AP, it is 
IMPLEMENTATION DEFINED whether PSELn is read/write or RES0. The possible values of this bit are:

0 JTAG port n is not selected.

1 JTAG port n is selected.

A JTAG port is enabled if all of the following apply:

• The port is connected to the JTAG-AP.

• The PSELn bit for the port is set to 1.

• The PORTENABLED signal from the port to the JTAG-AP is asserted HIGH.

Caution
 You must only write to this register when the JTAG Engine is inactive and the WFIFO is empty. Writing PSEL at 
any other time has UNPREDICTABLE results.

This means that before writing to PSEL you must read the JTAG-AP CSW and check that the SERACTV and 
WFIFOCNT fields are both zero.

When more than one JTAG port is connected to the JTAG-AP, the same values for TDI, TMS, TRST* and 
nSRSTOUT are driven to all ports that are selected in the PSEL Register. If more than one port is selected in the 
PSEL register the return values from TDO are UNKNOWN.

This selection model means that, with the normal serially-connected model for JTAG, it is possible to update 
multiple TAPs in parallel. This functionality can be very useful, for example to provide synchronized behavior.

31 4 3 2 0

Reserved
RES0

PSEL7

1

PSEL6
PSEL5
PSEL4

8 7 6 5

PSEL0
PSEL1
PSEL2
PSEL3
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Because each JTAG port might contain multiple TAPs connected in series, the process for updating TAPs in parallel 
is:

1. Scan each JTAG port in turn, by selecting each port in turn in the PSEL register. When scanning a port, leave 
the required TAP in the TAP Exit1 or Exit2 state.

2. When all ports have been scanned in this way, write to PSEL again to select all of the required ports.

3. Scan through the TAP Update state. All of the TAPs are updated synchronously.

Note
 In the normal serially-connected JTAG model, Instruction Register updates are always made in parallel.
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8.5.4 PSTA, Port Status Register

The PSTA register attributes are:.

Purpose 

The PSTA register indicates whenever a JTAG port that is connected and selected has been disabled, 
even if the disable is only transient.

Configurations 

 A JTAG-AP register.

Attributes 

The PSTA register is:

• At offset 0x08 in the JTAG-AP register space.

• A read/write register.

• Reset value is 0.

The PSTA register bit assignments are:

Figure 8-14 JTAG-AP Port Status Register, PSTA, bit assignments

Bits[31:8] 

Reserved, RES0.

PSTAn, bit[n], for n = 0 to 7 

Sticky status flag for JTAG port n.

This bit is R/W1C.

If JTAG port n is connected to the JTAG-AP and PSEL.PSELn is set to 1, then PSTAn is set to 1 if 
the port is disabled. The flag captures and holds the fact that a connected and selected port has been 
disabled or powered down, even if this is only transient.

Table 8-7 shows the behavior on reads and writes:

Note
 If a port is not connected to the JTAG-AP, its PSTAn bit is RAZ.

31 4 3 2 0

Reserved
RES0

PSTA7

1

PSTA6
PSTA5
PSTA4

8 7 6 5

PSTA0
PSTA1
PSTA2
PSTA3

Table 8-7 Behavior on reads and writes of PSTAn

Value Meaning on reads Action on writes

0 Port has not been disabled No action, write is ignored

1 Port has been disabled Clear bit to 0
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Chapter 9 
Component and Peripheral ID Registers

This chapter describes the Component and Peripheral ID Registers that form part of the register space of every 
debug component that complies with the ARM Peripheral Identification specification. This means that these 
registers form part of the debug register files and ROM tables shown in Figure 1-5 on page 1-29, and in other 
illustrations of debug systems.

This chapter contains the following sections:
• Component and Peripheral ID registers on page 9-186.
• The Component ID Registers on page 9-187.
• The Peripheral ID Registers on page 9-191.

Note
 Contact ARM if you require more details of the ARM Peripheral Identification specification.
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9.1 Component and Peripheral ID registers
The Component and Peripheral ID registers provide a generic model for component identification.

A generic component occupies a continuous register space that covers one or more 4KB blocks. The Peripheral and 
Component ID registers are always located at the end of this register space, with the Component ID Registers 
occupying the last four words of this block. This means that, if a component occupies more than one 4KB block, 
the Component and Peripheral ID Registers are located at the end of the last block.

This section gives a summary of the registers, including the memory map of the registers in the final 4KB block of 
register address space. The registers are described in detail in:
• The Component ID Registers on page 9-187.
• The Peripheral ID Registers on page 9-191.

9.1.1 Summary of Component and Peripheral ID Registers

Table 9-1 lists the Component and Peripheral ID Registers, and indicates where each register is described in detail. 
This table shows the memory map of these registers, at the end of the final 4KB block of register space.

All of the registers listed in Table 9-1 are required in every debug component implementation.

Table 9-1 Summary of Component and Peripheral ID Registers

Address Name Access Value

0xFD0 PIDR4 RO IMPLEMENTATION DEFINEDa

a. See the register description for more information.

0xFD4 PIDR5, see PID5-PID7 RO 0x00000000

0xFD8 PIDR6, see PID5-PID7 RO 0x00000000

0xFDC PIDR7, see PID5-PID7 RO 0x00000000

0xFE0 PIDR0 RO IMPLEMENTATION DEFINEDa

0xFE4 PIDR1 RO IMPLEMENTATION DEFINEDa

0xFE8 PIDR2 RO IMPLEMENTATION DEFINEDa

0xFEC PIDR3 RO IMPLEMENTATION DEFINEDa

0xFF0 CIDR0 RO 0x0000000D

0xFF4 CIDR1 RO IMPLEMENTATION DEFINEDa

0xFF8 CIDR2 RO 0x00000005

0xFFC CIDR3 RO 0x000000B1
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9.2 The Component ID Registers
There are four read-only Component Identification Registers, Component ID register 3 to Component ID register 0, 
CIDR3-CIDR0. Table 9-2 lists these registers:

These registers occupy the last four words of a 4KB register space of a component. If the register space of a 
component occupies more than one 4KB block they are the last four words of the last 4KB block.

The Component ID Registers:

• Identify the 4KB block of memory space as a component, by the use of a signature.

• Identify the component type, by the contents of the signature. This means that the contents of the Component 
ID Registers act as a preamble to a component type-specific set of identification registers.

Only bits [7:0] of each register are used. Figure 9-1 shows the concept of a single 32-bit component ID, obtained 
from the four Component Identification Registers.

Figure 9-1 Mapping between the Component ID Registers and the Component ID value

The Component Class field identifies the type of the component. Table 9-3 lists the permitted values for this field. 
It also shows which components have a standardized layout for the remainder of the 4KB register space.

Table 9-2 Summary of the Component Identification Registers

Register Address

CIDR0 0xFF0

CIDR1 0xFF4

CIDR2 0xFF8

CIDR3 0xFFC

1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 b b b b 0 0 0 0 0 0 0 0 1 1 0 1

CID3 register

Conceptual 32-bit component ID

Actual ComponentID register fields

7 0

CID2 register CID1 register CID0 register

Component ID

7 0 7 0 7 0

31 2423 1615 8 7 0

4 3

1211

PreamblePreamble Component 
Class

Table 9-3 Component Class values in the Component ID

Component class Class description Standardized layout

0x0 Generic verification component None.

0x1 ROM Table See Chapter 10 ROM Tables.

0x2 - 0x8 Reserved -

0x9 Debug component See the CoreSight Architecture Specification.

0xA Reserved -

0xB Peripheral Test Block (PTB) None.

0xC Reserved -
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As shown in Table 9-3 on page 9-187, ROM table components have a standard register space layout. This is defined 
in Chapter 10 ROM Tables.

Debug components have a standard layout of Peripheral Identification Registers, as defined in the CoreSight 
Architecture Specification. These registers are summarized in The Peripheral ID Registers on page 9-191.

Note
 The CoreSight Architecture Specification requires CoreSight components to implement other registers in the 
address space 0xF00 to 0xFFF, in addition to the Component ID Registers and Peripheral ID Registers.

Processors that comply with the ARMv7 Debug Architecture, and trace macrocells that comply with the ETM 
Architecture Specification version 3.2 or later, identify themselves as Debug components. For more information see 
the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition and the ETM Architecture Specification.

The following sections describe each of the Component ID Registers.

0xD OptimoDE Data Engine SubSystem (DESS) component None.

0xE Generic IP component None.

0xF PrimeCell peripheral None.

Table 9-3 Component Class values in the Component ID (continued)

Component class Class description Standardized layout
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9.2.1 CIDR0, Component ID Register 0

The CIDR0 characteristics are:

Purpose Provides bits[7:0] of the 32-bit conceptual Component ID, see Figure 9-1 on page 9-187.

Attributes A read-only register at address offset 0xFF0.

The CIDR0 register bit assignments are:

Bits[31:8] Reserved, RES0.

PRMBL_0, bits[7:0] 

Preamble byte 0. This byte has the value 0x0D.

9.2.2 CIDR1, Component ID Register 1

The CIDR1 characteristics are:

Purpose Provides bits[15:8] of the 32-bit conceptual Component ID, see Figure 9-1 on page 9-187.

Attributes A read-only register at address offset 0xFF4.

The CIDR1 register bit assignments are:

Bits[31:8] Reserved, RES0.

CLASS, bits[7:4] 

Component class. Table 9-3 on page 9-187 shows the possible values of this field.

PRMBL_1, bits[3:0] 

Preamble bits[11:8]. This field has the value 0x0.

10 0 0 0 1 1Reserved, RES0

31 0

0

PRMBL_0

8 7

0CLASS 0 0Reserved, RES0

31 0

0

PRMBL_1

8 7 4 3
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9.2.3 CIDR2, Component ID Register 2

The CIDR2 characteristics are:

Purpose Provides bits[23:16] of the 32-bit conceptual Component ID, see Figure 9-1 on page 9-187.

Attributes A read-only register at address offset 0xFF8.

The CIDR2 register bit assignments are:

Bits[31:8] Reserved, RES0.

PRMBL_2, bits[7:0] 

Preamble byte 2. This byte has the value 0x05.

9.2.4 CIDR3, Component ID Register 3

The CIDR3 characteristics are:

Purpose Provides bits[31:24] of the 32-bit conceptual Component ID, see Figure 9-1 on page 9-187.

Attributes A read-only register at address offset 0xFFC.

The CIDR3 Register bit assignments are:

Bits[31:8] Reserved, RES0.

PRMBL_3, bits[7:0] 

Preamble byte 3. This byte has the value 0xB1.

10 0 0 0 0 1Reserved, RES0

31 0

0

PRMBL_2

8 7

01 0 1 1 0 1Reserved, RES0

31 0

0

PRMBL_3

8 7
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9.3 The Peripheral ID Registers
The peripheral identification registers provide standard information required by all components that conform to the 
generic ID registers specification. They identify a peripheral within a particular namespace.

A set of Peripheral ID Registers comprises eight registers, Peripheral ID register 7 to Peripheral ID register 0, 
PIDR7-PIDR0. Table 9-4 lists the Peripheral ID registers in order of their address offsets, and gives their offsets 
within a 4KB register space.

Note
 Table 9-4 lists the Peripheral ID registers in address order. This does not match the numerical order of the registers, 
PIDR0-PIDR7.

Only bits [7:0] of each Peripheral ID Register are used, with bits [31:8] reserved. Together, the eight Peripheral ID 
Registers can be considered to define a single 64-bit Peripheral ID, as shown in Figure 9-2.

Figure 9-2 Mapping between the Peripheral ID Registers and the Peripheral ID value

Figure 9-3 shows the standard Peripheral ID fields in the single conceptual Peripheral ID, for a peripheral designed 
by ARM.

Figure 9-3 Peripheral ID field descriptions

Table 9-4 Summary of the peripheral identification registers

Register Address

PIDR4 0xFD0

PIDR5 0xFD4

PIDR6 0xFD8

PIDR7 0xFDC

PIDR0 0xFE0

PIDR1 0xFE4

PIDR2 0xFE8

PIDR3 0xFEC

0

PID0 register

7 07 07 07 07 07 07 07

PID1 registerPID2 registerPID3 registerPID4 registerPID5 registerPID6 registerPID7 register

63 16 15 8 0724 2332 3140 3948 4756 55

Conceptual 64-bit Peripheral ID

0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 1 0 1 1 11 0 1

Conceptual 64-bit Peripheral ID

63

07

24 2332 3140 3948 4756 55

PID0 registerPID1 registerPID2 registerPID3 registerPID4 registerPID5 registerPID6 registerPID7 register

Reserved, 
RES0

PartNumberJEP106
ID code

4KB
count

RevAnd

JEP106
Continuation code

Customer
modified

Revision

Uses JEP106 ID code

Bits with no value shown are IMPLEMENTATION DEFINED.
Other bits not shown as Reserved are shown for an implementation designed by ARM.

0

07070707070707

111218192027283536
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Note
 Figure 9-3 on page 9-191 shows the short description of each of the Peripheral ID fields, not the actual PIDR register 
field names.

Table 9-5 lists the standard Peripheral ID fields, and shows where this information is held in the Peripheral ID 
Registers.

For more information about these fields, see the CoreSight Architecture Specification.

Note
 In legacy components, an ASCII Identity Code, allocated by ARM, is used rather than the JEP106 ID code. In such 
a component:

• The 7-bit ASCII Identity Code replaces the 7-bit JEP106 ID code shown in Figure 9-3 on page 9-191. This 
field is split between the Peripheral ID1 and Peripheral ID2 Registers.

On legacy components designed by ARM this field has the value 0x41.

Table 9-5 Register fields for the peripheral identification registers

Name Size Description Register fields

SIZE 4 bits 4KB count. Log2 of the number of 4KB blocks occupied by the component. The 
number of blocks occupied by a component must be a power of two, and this field 
gives that power. The first four possible values of this field are:
0b0000 1 block.
0b0001 2 blocks.
0b0010 4 blocks.
0b0011 8 blocks.

PIDR4.SIZE

DES_0, 
DES_1, 
DES_2

4+7 bits JEP106 code. Identifies the designer of the component. This field consists of both:
• A 7-bit identity code. DES_ defines bits[3:0]. and DES_1 defines bits[6:4].
• A 4-bit continuation code, defined by DES_2.
For an implementation designed by ARM, the continuation code is 0x4 and the 
identity code is 0x3B.

PIDR1.DES_0, 
PIDR2.DES_1, 
PIDR4.DES_2

REVAND 4 bits RevAnd. Manufacturer Revision Number. Indicates a late modification to the 
component, usually as a result of an Engineering Change Order.
This field starts at 0x0 and is incremented by the integrated circuit manufacturer on 
metal fixes.

PIDR3.REVAND

CMOD 4 bits Customer modified. Indicates an endorsed modification to the component.
If the system designer cannot modify the implementation supplied by the designer 
of the ADI then this field is RAZ.

PIDR3.CMOD

REVISION 4 bits Revision of the peripheral.
Starts at 0x0 and increments by 1 at both major and minor revisions.

PIDR2.REVISION

JEDEC 1 bit Uses JEP106 ID code. This bit is set to 1 when a JEP106 ID code is used.
This bit must be 1 on new implementations.

PIDR2.JEDEC

PART_0, 
PART_1

12 bits PartNumber. PART_1 defines PartNumber[11:8], and PART_0 defines 
PartNumber[7:0]. The part number for the component.
Each organization designing components to the ARM Peripheral Identification 
specifications has its own part number list.
For components with a component class 0x9, multiple components are permitted 
to share the same Part number so long as they have different DEVTYPEs. 
However, ARM recommends that each component has a unique Part number.

PIDR0.PART_0, 
PIDR1.PART_1
9-192 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813



9 Component and Peripheral ID Registers 
9.3 The Peripheral ID Registers
• The Uses JEP106 ID code bit, bit [3] of the Peripheral ID2 Register, is zero.

• The Peripheral ID4 Register is not implemented.

Legacy Peripheral ID layout on page 9-197 is an example of the use of the ASCII Identity Code.

ASCII Identity Codes must not be used for new designs.

The fields present in each Peripheral ID Register are indicated in the following sections, where the registers are 
described in register name order (ID0 to ID7). Table 9-4 on page 9-191 lists the register numbers and addresses of 
these registers, in register address order, which does not match the register name order.

9.3.1 PIDR0, Peripheral ID Register 0

The PIDR0 characteristics are:

Purpose Provides bits[7:0] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFE0.

The PIDR0 register bit assignments are:

Bits[31:8] Reserved, RES0.

PART_0, bits[7:0] 

PartNumber[7:0]. Bits[7:0] of the IMPLEMENTATION DEFINED part number.

See Table 9-5 on page 9-192 for more information about the register fields.

9.3.2 PIDR1, Peripheral ID Register 1

The PIDR1 characteristics are:

Purpose Provides bits[15:8] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFE4.

The PIDR1 register bit assignments are:

Bits[31:8] Reserved, RES0.

DES_0, bits[7:4] 

JEP106 ID code[3:0]. When PIDR2.JEDEC is RAO, bits[3:0] of the IMPLEMENTATION DEFINED 
JEP106 ID code.

For an implementation designed by ARM, the JEP106 ID code is 0x3B and therefore this field is 0xB.

On a legacy component, when PIDR2.JEDEC is RAZ, this field is ASCII Identity Code[3:0]. See 
also the description of the PIDR2[2:0] field.

PART_1, bits[3:0] 

PartNumber[11:8]. Bits[11:8] of the IMPLEMENTATION DEFINED part number.

See Table 9-5 on page 9-192 for more information about the register fields.

PART_0Reserved, RES0

31 08 7

DES_0 PART_1Reserved, RES0

31 038 7 4
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9.3.3 PIDR2, Peripheral ID Register 2

The PIDR2 characteristics are:

Purpose Provides bits[23:16] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFE8.

The PIDR2 Register bit assignments are:

Bits[31:8] Reserved, RES0.

REVISION, bits[7:4] 

The IMPLEMENTATION DEFINED revision number for the implementation.

JEDEC, bit[3] 

Uses JEP106 ID code. Indicates whether the Peripheral ID uses a JEP106 ID code.

For new implementations, including all ARMv7 and later implementations, this bit must be RAO, 
indicating that the Peripheral ID uses a JEP106 ID code.

On a legacy component, this bit might be RAZ, indicating that the Peripheral ID uses an ASCII 
Identity Code, and that PIDR2[2:0] are ASCII Identity Code[6:4].

DES_1, bits[2:0] 

JEP106 ID code[6:4]. When the JEDEC field is RAO, bits[6:4] of the IMPLEMENTATION DEFINED 
JEP106 ID code.

For an implementation designed by ARM, the JEP106 ID code is 0x3B and therefore this field is 
0b011.

On a legacy component, when the JEDEC field is RAZ, this field is ASCII Identity Code[6:4].

See Table 9-5 on page 9-192 for more information about the register fields.

DES_1REVISION 1Reserved, RES0

31 03

JEDEC

8 7 4 2
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9.3.4 PIDR3, Peripheral ID Register 3

The PIDR3 characteristics are:

Purpose Provides bits[31:24] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFEC.

The PIDR3 register bit assignments are:

Bits[31:8] Reserved, RES0.

REVAND, bits[7:4] 

RevAnd. The IMPLEMENTATION DEFINED manufacturing revision number for the implementation.

CMOD, bits[3:0] 

Customer modified. An IMPLEMENTATION DEFINED value that indicates an endorsed modification 
to the implementation.

If the system designer cannot modify the implementation supplied by the designer of the ADI then 
this field is RAZ.

See Table 9-5 on page 9-192 for more information about the register fields.

9.3.5 PIDR4, Peripheral ID Register 4

The PIDR4 characteristics are:

Purpose Provides bits[39:32] of the 64-bit conceptual Peripheral ID, see Figure 9-3 on page 9-191.

Attributes A read-only register at address offset 0xFD0.

Note
 On a legacy component, when bit PIDR2[3] is RAZ, PIDR4 is not implemented. However, the register at 0xFD0 
might be used by the component.

The PIDR4 register bit assignments are:

Bits[31:8] Reserved, RES0.

SIZE, bits[7:4] 

4KB count. Log2 of the number of 4KB blocks occupied by the component.

DES_2, bits[3:0] 

JEP106 Continuation code. The IMPLEMENTATION DEFINED JEP106 Continuation code.

For an implementation designed by ARM this field is 0x4.

See Table 9-5 on page 9-192 for more information about the register fields.

REVAND CMODReserved, RES0

31 038 7 4

SIZE DES_2Reserved, RES0

31 038 7 4
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9.3.6 PIDR5-PIDR7, Peripheral ID Registers 5-7

Registers PIDR5-PIDR7 do not hold any information. Table 9-4 on page 9-191 shows the address offsets of these 
registers.

Note
 On legacy components, when bit PIDR2[3] is RAZ, the Peripheral ID5 to Peripheral ID7 registers PIDR5-PIDR7 
are not implemented. However, the registers at 0xFD4, 0xFD8, and 0xFDC might be used by the component.

The bit assignments for registers PIDR5-PIDR7 are:

Bits[31:8] Reserved, RES0.

Reserved, bits[7:0] 

Reserved, RES0.

Reserved, RES0Reserved, RES0

31 08 7
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9.3.7 Legacy Peripheral ID layout

Table 9-6 shows the format of the peripheral identification registers in a legacy component

A legacy peripheral component does not use JEP106 Identity Codes, and only implements four Peripheral ID 
Registers.

The Configuration Register, that corresponds to the Peripheral ID3 Register, contains information specific to the 
peripheral about build options. For example, it might indicate the width of a bus in the implementation.

Table 9-6 Identification Registers for a legacy component

Address Access Register Bits Value Description

0xFD0 
-0xFDC

- - [31:0] - Reserved.
Might be used by component. If so, value is 
IMPLEMENTATION DEFINED.

0xFE0 RO Peripheral ID0 [31:8] - Reserved. RAZ.

[7:0] IMPLEMENTATION DEFINED Part number[7:0]

0xFE4 RO Peripheral ID1 [31:8] - Reserved. RAZ.

[7:4] IMPLEMENTATION DEFINED ASCII Identity code[3:0]

[3:0] IMPLEMENTATION DEFINED Part number[11:8]

0xFE8 RO Peripheral ID2 [31:8] - Reserved. RAZ.

[7:4] IMPLEMENTATION DEFINED Revision number of peripheral.

[3] 0 ASCII Identity code is used.

[2:0] IMPLEMENTATION DEFINED ASCII Identity code[6:4].

0xFE8 RO Peripheral ID3 [31:8] - Reserved. RAZ.

[7:0] IMPLEMENTATION DEFINED Configuration Register.
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Chapter 10 
ROM Tables

The chapter describes ROM Tables. It includes the following sections:
• ROM Table overview on page 10-200.
• ROM Table entries on page 10-202.
• The MEMTYPE register on page 10-205.
• Component and Peripheral ID Registers on page 10-206.
• ROM Table hierarchies on page 10-207.
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10.1 ROM Table overview
ROM Tables hold information about debug components.

• When a Debug Access Port connects to a single debug component, a ROM Table is not required. However, 
a designer might choose to implement such a system to include a ROM Table, as shown in Figure 1-5 on 
page 1-29.

• If a Debug Access Port connects to more than one debug component then the system must include at least 
one ROM Table.

A ROM Table connects to a bus controlled by a Memory Access Port (MEM-AP). In other words, the ROM Table 
is part of the address space of the memory system that is connected to a MEM-AP. There can be more than one ROM 
Table connected to a single bus.

A ROM Table:
• Always occupies 4KB of memory.
• Is a read-only device. Writes to ROM Table addresses are ignored.

A ROM Table is divided into a number of regions, as shown in Table 10-1 and Figure 10-1 on page 10-201.

Table 10-1 ROM Table regions

Region Start address End address Notes

ROM Table entries 0x000 IMPLEMENTATION DEFINED See ROM Table entries on page 10-202.

Reserved region IMPLEMENTATION 
DEFINED

0xFCB Unused area of ROM Table. See The unused area of 
the ROM Table on page 10-204

MEMTYPE register 0xFCC 0xFCF -

Peripheral ID registers 0xFD0 0xFEF See Component and Peripheral ID Registers on 
page 10-206.

Component ID registers 0xFF0 0xFFF
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Figure 10-1 ROM Table format

Note
 The ROM Table area from 0xF00 to 0xFCB is reserved, RES0. The last possible ROM Table entry is at 0xEFC.

0x00000000

Reserved, RES0

Address

0x000

Table Entry 1[31:0]

Reserved, RES0

MEMTYPE

Peripheral ID4

Peripheral ID5

Peripheral ID2

Peripheral ID3

0x004

0x000+4n

0xFC8

0xFCC

0xFD0

0xFD4

0xFE8

0xFEC

Component ID2

Component ID3

0xFF8

0xFFC

ROM
Table
entries

Table end 
marker

Reserved 
region

MEMTYPE
and ID

Registers

Table Entry 0[31:0]
31 0

Table Entry n[31:0]

Reserved, RES0

0x004+4n

0x008+4n
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10.2 ROM Table entries
The series of ROM Table entries start at the base address of the ROM Table. The values of these entries depend on 
the subsystem that is implemented.

Each ROM Table entry:
• Describes a single debug component within the system.
• Is a single 32-bit word.

Table 10-2 shows the format of a single entry in the ROM Table.

Table 10-2 Format of a ROM Table entry

Bits Field name Description

[31:12] Address offset The base address of the component, relative to the base address of this ROM Table.
Negative values are permitted, using two’s complement.

Note
 The Address offset field of a ROM Table entry must not be zero, even if bit [0] of the entry is 
0. This is because a zero address offset points back to this ROM Table.

See Component descriptions and the component base address on page 10-203 for more 
information.

[11:9] - Reserved. RES0.

[8:4] Power domain IDa Indicates the power domain of the component. This field:
• Is only valid if bit[2]==1., otherwise this field must be RAZ.
• Supports up to 32 power domains using values 0x00 to 0x1F. 

[3] - Reserved. RES0.

[2] Power domain ID valida Indicates if the Power domain ID field contains a Power domain ID:
0 Power domain ID not provided.
1 Power domain ID provided in bits[8:4].

[1] Format This bit indicates the format of the ROM Table. It is RAO, indicating a 32-bit ROM Table 
format.

[0] Entry present This bit indicates whether an entry is present at this location in the ROM Table. Its possible 
values are:
0 Entry not present.
1 Entry present.
See Empty entries and the end of the ROM Table on page 10-204 for more information.

a. See CoreSight Architecture Specification for more information on Power domains. 
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10.2.1 Component descriptions and the component base address

Each debug component occupies one or more 4KB blocks of address space. This block of address space is referred 
to as the Debug Register File for the component. See Figure 1-3 on page 1-28, and other figures in Chapter 1 for 
examples.

The Address offset field of a ROM Table entry points to the start of the last 4KB block of the address space of the 
component. This block always contains the Component and Peripheral ID Registers for the component, starting at 
offset 0xFD0 from the start of the block. The 4KB count field, bits PIDR4[7:4], specifies the number of 4KB blocks 
for the component. Therefore, the process for finding the start of the address space for a component is:

1. Read the ROM Table entry for the component, and extract the Address offset for the component. The Address 
offset is bits [31:12] of the ROM Table entry.

2. Use the Address offset, together with the base address of the ROM Table, to calculate the base address of the 
component. The component base address is:

Component_Base_Address = ROM_Base_Address + (Address_Offset << 12)

When performing this calculation, remember that the Address_Offset value might be a two’s complement 
negative value.

Component_Base_Address is the start address of the final 4KB block of the address space for the component.

3. Read the Peripheral ID4 Register for the component. The address of this register is:

Peripheral_ID4_address = Component_Base_Address + 0xFD0

4. Extract the 4KB count field, bits [7:4], from the value of the Peripheral ID4 Register.

5. Use the 4KB count value to calculate the start address of the address space for the component.

If the 4KB count field is 0b0000, indicating a count value of 1, the address space for the component starts at 
the Component_Base_Address obtained at stage 2.

In general, the ROM Table indicates all the valid addresses in the memory map of the connection from the DAP to 
the system being debugged. For more information about accesses to addresses that are not pointed to by the ROM 
Table see MEMTYPE.

Note
 As explained in this section, the ROM Table only indicates the base address of each component, and you must 
examine the Peripheral ID Registers for the component to check whether the component occupies more than one 
4KB memory block.

ARM recommends that the debug component base address is aligned to the largest translation granule supported by 
any processor that can access the component. For an ARMv8 processor, this might be 64KB.

For more information about the Component and Peripheral ID Registers see Chapter 9 Component and Peripheral 
ID Registers.
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10.2.2 Empty entries and the end of the ROM Table

The descriptions of the debug components are stored in sequential locations in the ROM Table, starting at the ROM 
Table base address. However, a ROM Table entry can be marked as not present by setting bit [0] of the entry to 0.

When scanning the ROM Table, an entry marked as not present must be skipped. However you must not assume 
that an entry that is marked as not present represents the end of the ROM Table. For example, a ROM Table might 
be generated using static configuration tie-offs that indicate the presence or absence of particular devices, giving 
not present entries in the ROM Table.

Note
 If the top-level ROM Table is generated using static configuration tie-offs, then the Peripheral ID Register values 
must also depend on these tie-offs. This is because each possible topology must have a unique Peripheral ID.

ROM Table hierarchies on page 10-207 describes how there can be a hierarchy of ROM Tables, and that such a 
hierarchy must have a top-level ROM Table.

The end of the ROM Table

Immediately after the last component entry in the ROM Table there must be a blank ROM Table entry with the value 
0x00000000.

This blank entry marks the end of the ROM Table.

The unused area of the ROM Table

A ROM Table always:
• Occupies a single 4KB block of memory.
• Has its ROM Table entries starting at offset 0x000 in the ROM Table.
• Has a blank entry to indicate the end of the ROM Table entries.
• Has a reserved area, starting at offset 0xF00 in the ROM Table.
• Has its MEMTYPE and ID Registers starting at offset 0xFCC in the ROM Table.

This means that there is almost always an unused area in the ROM Table, between the blank entry that marks the 
end of the ROM Table entries and the start of the reserved area at offset 0xF00. This unused area is reserved, RES0. 
Similarly, the reserved area starting at offset 0xF00 and ending at 0xFCB, immediately before the MEMTYPE register, 
is RES0.

Note
 • A ROM Table can hold up to 960 entries.
• Unless a ROM Table is holding its maximum number of entries there is an unused area between the blank 

entry that marks the end of the ROM Table entries and the start of the reserved area at offset 0xF00.
• If a ROM Table holds its maximum number of entries, there is no blank entry indicating the end of the ROM 

Table. The table entries end at offset 0xF00 in the ROM Table.
An implementation is unlikely to require the maximum number of entries in a ROM Table. However, ROM 
Table hierarchies on page 10-207 describes how larger ROM Tables can be constructed.
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10.3 The MEMTYPE register
The MEMTYPE register characteristics are:

Purpose Identifies the type of memory present on the bus that connects the DAP to the ROM Table. 
In particular, it identifies whether system memory is connected to the bus.

Configurations Every ROM Table must implement a MEMTYPE register.

Attributes A read-only register, at offset 0xFCC from the base address of the ROM Table.

The MEMTYPE register bit assignments are:

Bits[31:1] Reserved, RES0.

SYSMEM, bit[0] 

System memory present. Indicates whether system memory is present on the bus that connects to 
the ROM Table. The possible values are:
0 System memory not present on bus. This is a dedicated debug bus.
1 System memory is also present on this bus.

MEMTYPE.SYSMEM indicates the memory accesses that the DAP can make:

When SYSMEM is RAZ 

The ROM Table indicates all the valid addresses in the memory system that the DAP is connected 
to, and the result of accessing any other address is UNPREDICTABLE. For more information, see 
Component descriptions and the component base address on page 10-203.

When SYSMEM is RAO 

There might be other valid addresses in the memory system that the DAP is connected to. The result 
of accessing these addresses is IMPLEMENTATION DEFINED, and:

• The ADIv5 specification does not include any mechanism that the DAP can use to discover 
what addresses it can access, other than those indicated by the ROM Table.

• If the DAP accesses addresses other than those indicated by the ROM Table this might have 
side effects on the system that the DAP is connected to.

Reserved, RES0

31 0

SYSMEM

1
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10.4 Component and Peripheral ID Registers
Any ROM Table must implement a set of Component and Peripheral ID Registers, that start at offset 0xFD0 in the 
ROM Table. Chapter 9 Component and Peripheral ID Registers describes these registers. This section only 
describes particular features of the registers when they relate to a ROM Table.

In a ROM Table implementation:
• The Component class field, CIDR1.CLASS is 0x1, identifying the component as a ROM Table.
• The PIDR4.SIZE field must be 0. This is because a ROM Table must occupy a single 4KB block of memory.

10.4.1 Identifying the debug SoC or platform

The top-level ROM Table Peripheral ID Registers uniquely identify the SoC or platform. If a system has more than 
one Memory Access Port with a connected ROM Table then the information from the Peripheral ID Registers of all 
of the top-level ROM Tables, considered collectively, is required to uniquely identify the SoC or platform. An 
example of a system with multiple MEM-APs is shown in Figure 1-6 on page 1-30.

If there is any change in the set of components identified by the ROM Table, or any change in the connections to 
those components, then the Peripheral ID Registers must be updated to reflect the change.

Each possible configuration must be uniquely identifiable from the Peripheral ID Register values. This is because 
the Peripheral ID can be used by the debugger to name the description of the system.

When a debugger performs topology detection on the system that it connects to through a DAP, it can save its 
description of the system with the Peripheral ID. If that system is connected to the debugger again, the debugger 
can retrieve that saved description, avoiding any requirement for topology detection.

If two different systems have the same Peripheral ID a debugger might retrieve an incorrect description. If this 
situation occurs, you must force the debugger to perform topology detection again.

If the DAP implements DPv2, the DP TARGETID register also uniquely identifies the SoC or platform, and ARM 
deprecates use of the top-level ROM Table Peripheral ID registers as a unique identifier by tools.

Note
 • If SWJ-DP is implemented, it is not required that both the JTAG-DP and SW-DP implement the same DP 

architecture version, and therefore TARGETID. Tools might be using a DP that does not implement DPv2.

• Deprecation of the use of the top-level ROM Table peripheral ID registers by tools does not remove the 
requirement on implementations to provide a unique identifier in the top-level ROM Table peripheral ID 
registers. Future releases of this manual might remove this requirement.
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Normally, each ROM Table entry points to the memory space of a debug component. The Component and 
Peripheral ID Registers for that component start at offset 0xFD0 from the base address of the component, as 
Component descriptions and the component base address on page 10-203 describes. The Component class field, 
bits [7:4], of the Component ID1 Register identify the type of the component. This field is described in The 
Component ID Registers on page 9-187.

A ROM Table entry can point to another ROM Table. In this case:

• The Component class field of the Component ID1 Register in the memory area indicated by the ROM Table 
Entry is 0x1, indicating that the component is another ROM Table.

• The top level ROM Table and the second-level ROM Table must both be examined to discover all the debug 
components in the system.

A ROM Table at any level can include entries that point to lower-level ROM Tables. Also, any ROM Table can 
include more than one entry that points to lower-level ROM Tables. This means that a hierarchy of ROM Tables can 
exist. All ROM Tables within that hierarchy must be scanned to discover all of the debug components in the system.

The MEM-AP BASE register must point to the top level ROM Table in the hierarchy.

Figure 10-2 shows an example of a ROM Table hierarchy.

Figure 10-2 ROM Table hierarchy example

A hierarchy of ROM Tables might increase the total number of ROM Table entries in the system.

However, a hierarchy might be implemented for some other reason, for example to reflect the logical organization 
of the debug components of the system. There might be only a few entries in each ROM Table within a hierarchy.

10.5.1 Peripheral ID Registers in lower-level ROM Tables

The Peripheral ID value obtained from the Peripheral ID Registers of any ROM Table that is not a top-level ROM 
Table is not used by the debugger, and does not have to be unique. This applies to the Peripheral ID of all ROM 
Tables that are only accessed through other ROM Tables.

The contents of the Peripheral ID Registers in lower-level ROM Tables might be:

• Set to a Peripheral ID value that represents the subsystem described by the ROM Table, enabling that 
subsystem to be implemented as the only component of another debug system.

• Set to the Peripheral ID value of the top-level ROM Table.

• Set to a value reserved by the implementor to indicate a lower-level ROM Table.

These are only examples of the values that might be used for the Peripheral ID Registers of lower-level ROM Tables. 
This specification does place any requirement on the values used for these registers.
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Note
 The Component ID Registers of lower-level ROM Tables must be implemented as described in The Component ID 
Registers on page 9-187. It is particularly important that the Component class field of the Component ID1 Register 
correctly identifies the component as a ROM Table.

10.5.2 Prohibited ROM Table references

Every debug component within a system must appear only once in the ROM Table, or ROM Table hierarchy, that 
is visible to an external debugger. Figure 10-3 shows a prohibited case, where entries in ROM Tables B and C both 
point to ROM Table D.

Figure 10-3 Prohibited duplicate ROM Table reference from ROM Table

Figure 10-4 shows a similar prohibited case, where entries in ROM Table A and MEM-AP 2 both point to ROM 
Table B.

Figure 10-4 Prohibited duplicate ROM Table reference from MEM-AP

In addition, circular ROM Table references are prohibited. This means that a ROM Table entry must not point to a 
ROM Table that directly or indirectly points to itself. In particular, ROM Table entries must not point back to the 
top-level ROM Table. This is shown in Figure 10-5 on page 10-209, where both ROM Table B and ROM Table C 
have prohibited links back to ROM Table A.
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Figure 10-5 Prohibited circular ROM Table references

Note
 There is no requirement that components in separate ROM Table hierarchies must be in separate systems. This 
includes multiple APs in a single DAP, and multiple DAPs. For example, if MEM-AP 1 in DAP 1 points to a 
hierarchy of ROM Tables which includes a pointer to trace macrocell A, and MEM-AP 2 in DAP 2 points to a 
hierarchy of ROM Tables which includes a pointer to trace sink B, then trace from trace macrocell A can be 
collected by trace sink B, as shown in Figure 10-6.

Figure 10-6 Components in separate ROM Table hierarchies

ROM Table B ROM Table CROM Table A
Entry 1

Top level

Entry 3

Level 2 Level 3

Entry 2

MEM-AP 
BASE Register

Trace macrocell AROM Table A

Top level Level 1

1 BASE 
Register

MEM-AP 2 
BASE Register

Entry 4

Trace sink BROM Table B

Entry 3

DAP 1

DAP 2
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. 10-209
ID080813 Non-Confidential



10 ROM Tables 
10.5 ROM Table hierarchies
10-210 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813



Appendix A 
Standard Memory Access Port Definitions

This appendix provides information on implementing the Memory Access Port (MEM-AP). It contains the 
following sections:
• Introduction on page A-212.
• AMBA AXI3 and AXI4 on page A-213.
• AMBA AXI4 with ACE-Lite on page A-215.
• AMBA AHB on page A-217.
• AMBA APB2 and APB3 on page A-218.
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A.1 Introduction
The Memory Access Port (MEM-AP) programmers’ model includes IMPLEMENTATION DEFINED features. This 
appendix provides reference implementation options for implementers and users of MEM-APs when connecting to 
standard memory interfaces. In particular, it provides the recommended interpretations of the CSW.{Prot, SPIDEN, 
Type, AddrInc, Size} fields.
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A.2 AMBA AXI3 and AXI4
For more information, see AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and 
ACE-Lite™. For AMBA AXI3 and AXI4 implementations, the CSW register is implemented as follows:

Prot, bits [30:24] For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits [30:28] 
Drives AxPROT[2:0], where x is R for reads and W for writes, see Table A-1.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior 
depends on the vale of CSW.SPIDEN. For values in CSW.Prot[29]:

1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is 
HIGH.

0 Secure transfer requested. If CSW.SPIDEN is 1, ARPROT[1] or 
AWPROT[1] is LOW. If CSW.SPIDEN is 0, no transfer is initiated.

CACHE[3:0], bits [27:24] 
Drives AxCACHE[3:0], where x is R for reads and W for writes, see 
Table A-2. 

Note
 AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE. 

The reset value of CSW.Prot is 0b0110000.

SPIDEN, bit [23] The CSW.SPIDEN bit reflects the state of the CoreSight authentication signal, SPIDEN.

Type, bits [15:12] RES0.

Mode, bits [11:8] RES0.

AddrInc, bits [5:4] CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on 
page 7-138.

Table A-1 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged

Table A-2 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
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Size, bits [3:0] CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION 
DEFINED whether larger access sizes are supported. 
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A.3 AMBA AXI4 with ACE-Lite
For more information, see the AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE 
and ACE-Lite™. For AMBA AXI4 implementations with ACE-Lite the following registers are implemented as 
shown:
• CSW register implementation.
• MBT register implementation on page A-216.

A.3.1 CSW register implementation

The CSW register is implemented as follows:

Prot, bits[30:24] For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits[30:28] 
Drives AxPROT[2:0], where x is R for reads and W for writes, see Table A-3.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior 
depends on the value of CSW.SPIDEN. For values in CSW.Prot[29]:

1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is 
HIGH.

0 Secure transfer requested. If CSW.SPIDEN is 1, ARPROT[1] or 
AWPROT[1] is LOW. If CSW.SPIDEN is 0, no transfer is initiated.

CACHE[3:0], bits[27:24] 
Drives AxCACHE[3:0], where x is R for reads and W for writes, see 
Table A-4.

Note
 AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE. 

The reset value of CSW.Prot is 0b0110000.

SPIDEN, bit[23] The CSW.SPIDEN bit reflects the state of the CoreSight authentication signal, SPIDEN.

Table A-3 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged

Table A-4 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
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Type, bits[15:12] The CSW.Type field drives the AXI AxDOMAIN signals, where x is R for reads and W for 
writes.

The settings for the CSW.Type bit field are:

Bit[15] . Reserved, RES0.

DOMAIN[1:0], bits [14:13] 
Possible values are:

0b00 Non-shareable.

0b01 Inner shareable, includes additional masters.

0b10 Outer shareable, contains all masters in the Inner shareable domain 
and can include additional masters.

0b11 System, includes all masters.

EnMBT, bit [12] 
Enable MBT accesses. 
It is IMPLEMENTATION DEFINED whether this field is RW or RAO. If it is RW, 
the reset value is 0, and must be set to 1 before writing to the MBT register.

Mode, bits [11:8] It is IMPLEMENTATION DEFINED whether this field is RW or RO. If it is RW, the reset value 
is 0b0000, and must be set to 0b0001 before writing to the MBT register. If it is RO, then it 
has the fixed value 0b0001.

AddrInc, bits [5:4] CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on 
page 7-138.

Size, bits [3:0] CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION 
DEFINED whether larger access sizes are supported. 

A.3.2 MBT register implementation

The MBT register is implemented as follows:

Attributes MBT register is a read/write register.

Bits[31:3] Reserved, RES0.

BarTran, bits[2:1] Possible values are:

0b00 Reserved

0b01 Memory barrier

0b10 Reserved

0b11 Synchronization barrier.

Bit[0] On reads:

0 Barrier transaction in progress.

1 No barrier transaction in progress.

SBO on writes. 
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For more information, see the AMBA® Specification (Rev 2.0) and the AMBA® 3 AHB-Lite™ Protocol Specification. 
For AMBA AHB implementations, the CSW register is implemented as follows:

Prot, bits[30:24] The CSW.Prot field drives the AHB HPROT signals. The settings for the CSW.Prot field 
are:

Bit[30] Reserved, SBO. If this bit is written as 0 the behavior of an 
AHB-AP transaction is UNPREDICTABLE.

MasterType, bit[29] Master Type bit. MasterType permits the AHB-AP to mimic a 
second AHB master by driving a different value on 
HMASTER[3:0]. Support for this function is IMPLEMENTATION 
DEFINED. Valid values for this bit are:

1 Drive HMASTER[3:0] with the bus master ID for the 
AHB-AP.

0 Drive HMASTER[3:0] with the bus master ID for the 
second bus master.

If this function is not implemented the bit is RAZ/WI.

HPROT[4], Allocate, bit[28] 
Drives HPROT[4], Allocate. HPROT[4] is an ARMv6 extension 
to AHB. For more information, see the ARM1136JF-S™ and 
ARM1136J-S™ Technical Reference Manual.
If the AHB master interface does not support the ARMv6 extension 
to AHB, this bit is RAZ/WI.

HPROT[3:0], bits[27:24] 
Drives HPROT[3:0]. See Table A-5. Support for each HPROT 
signal in the AHB master interface is IMPLEMENTATION DEFINED.

The reset value of CSW.Prot is 0b1000011. 

SPIDEN, bit[23] It is IMPLEMENTATION DEFINED whether the CSW.SPIDEN bit reflects the state of the 
CoreSight authentication signal, SPIDEN. Otherwise, the CSW.SPIDEN bit is RAZ.

This bit is always read-only.

Note
 AMBA AHB does not support Security Extensions.

Type, bits[15:12] RES0.

Mode, bits[11:8] RES0.

AddrInc, bits[5:4] Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See 
Packed transfers on page 7-138.

Size, bits[3:0] CSW.Size must support word, half-word, and byte size accesses.

Table A-5 CSW.Prot mapping

Bit HPROT signal Description Description when not implemented at the AHB master interface

27 HPROT[3] Cacheable RAZ/WI

26 HPROT[2] Bufferable RAZ/WI

25 HPROT[1] Privileged RAO/WI

24 HPROT[0] Data RAO/WI
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A.5 AMBA APB2 and APB3
For more information see the AMBA® Specification (Rev 2.0), and the AMBA® 4 APB™ Protocol Specification For 
AMBA APB2 and APB3 implementations, the CSW register is implemented as follows:

Prot, bits[30:24] RES0.

SPIDEN, bit[23] RES0.

Type, bits[15:12] RES0.

Mode, bits[11:8] RES0.

AddrInc, bits[5:4] CSW.AddrInc does not support the Increment Packed mode of transfer. See Packed 
transfers on page 7-138.

Size, bits[3:0] CSW.Size only supports word accesses, and reads as 0b010. Writes to CSW.Size are 
ignored.
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Cross-over with the ARM Architecture

This appendix describes the required or recommended options for the ARM Debug Interface for the ARMv6-M and 
all ARMv7 and ARMv8 architecture profiles. It contains the following sections:
• Introduction on page B-220.
• ARMv6-M architecture on page B-221.
• ARMv7-M architecture profile on page B-222.
• ARMv7-A without Large Physical Address Extension and ARMv7-R architecture profiles on page B-223.
• ARMv7-A with Large Physical Address Extension and ARMv8-A architecture profiles on page B-224.
• Summary of the required ADIv5 implementations on page B-225.
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B.1 Introduction
The ARM Debug Interface v5 is the recommended external debug interface for ARMv6-M, all ARMv7, and all 
ARMv8 architecture profiles.

When designing with ARM Cortex™ processor cores and ARM CoreSight technology, the choice of Debug Access 
Port (DAP) features might be at the discretion of the system designer. ARM recommends that system designers 
choose a DAP that implements all the recommended features for all ARM architecture processor cores contained in 
the design.

ADIv5 might also be used with other architecture variants. For example, an ADIv5 JTAG Access Port (JTAG-AP) 
might access a Debug Test Access Port (DBGTAP), as defined by ARM Debug Interface v4 (ADIv4) for ARMv6 
architecture processors.
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B.2 ARMv6-M architecture
The ARMv6-M architecture requires an ADIv5-compliant DAP.

ARM recommends that the Debug Port (DP) implements the SWD interface, either through a SW-DP or SWJ-DP. 
A JTAG-DP is permitted. ARM recommends that the DP implements the MINDP model. See MINDP, Minimal 
Debug Port extension on page 2-36.

There must be one MEM-AP for each processor. Each MEM-AP must be capable of addressing the complete 
memory space visible to the processor, including all debug peripherals and the NVIC. The MEM-AP must support 
byte, half-word and word size accesses to memory. The MEM-AP is not required to support the packed increment 
transfer mode.

Other Access Ports (APs) can be connected to the DAP.
ARM IHI 0031C Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. B-221
ID080813 Non-Confidential



Appendix B Cross-over with the ARM Architecture 
B.3 ARMv7-M architecture profile
B.3 ARMv7-M architecture profile
The ARMv7-M architecture profile requires an ADIv5-compliant DAP.

ARM recommends that the DP implements the SWD interface, either through a SW-DP or SWJ-DP. A JTAG-DP 
is permitted. ARM recommends that the DP does not implement the MINDP model.

There must be one MEM-AP for each processor. Each MEM-AP must be capable of addressing the complete 
memory space visible to the processor, including all debug peripherals and the NVIC. The MEM-AP must support 
byte, half-word and word size accesses to memory. ARM recommends that the MEM-AP supports the packed 
increment transfer mode.

Other APs can be connected to the DAP.
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B.4 ARMv7-A without Large Physical Address Extension and ARMv7-R architecture 
profiles

The ARMv7-A and ARMv7-R architecture profiles do not require an ADIv5-compliant DAP. Although the ADIv5 
interface is not required for compliance with ARMv7, the ARM development tools require this interface to be 
implemented.

Where an ADIv5-compliant DAP is implemented, ARM recommends that the DP implements the JTAG and Serial 
Wire Debug interfaces through an SWJ-DP. ARM recommends that the DP does not implement the MINDP model.

Many processors can be connected to a single MEM-AP. The MEM-AP must only be capable of addressing the 
debug peripherals of the connected processors. If the MEM-AP can only address the debug peripherals, it is only 
required to support word size accesses to memory, and therefore is not required to support the packed increment 
transfer mode.

ARM recommends that debug implementations include a MEM-AP that can address the complete memory space 
visible to the processor or processors. This might be a second MEM-AP in the DAP. ARM recommends that a 
MEM-AP that can access the complete memory space supports byte, half-word and word size accesses to memory. 
ARM recommends that this MEM-AP supports the packed increment transfer mode.

Other APs can also be connected to the DAP.

Note
 Do not confuse the ARMv7-A Large Physical Address Extension with the ADIv5 MEM-AP Large Physical Address 
Extension.
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B.5 ARMv7-A with Large Physical Address Extension and ARMv8-A architecture 
profiles

The requirements for ARMv7-A with Large Physical Address Extension and ARMv8-A architecture profiles are 
the same as for the ARMv7-A without Large Physical Address Extension and ARMv7-R architecture profiles, with 
the following additions for any MEM-AP with system access:

• MEM-AP Large Physical Address Extension, up to at least the size supported by the processor.

• For ARMv7-A systems with the Large Physical Address Extension, ARM recommends the MEM-AP 
implements the Large Data Extension providing at least doubleword accesses, to allow for atomic update of 
page table entries.

• For ARMv8-A systems, the MEM-AP must implement the Large Data Extension providing at least 
doubleword accesses.
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B.6 Summary of the required ADIv5 implementations
Table B-1 summarizes the required and recommended components of an ADIv5 implementation for each of the 
ARM architecture variants for which ADIv5 is the required or recommended DAP.

Table B-1 Recommended ADIv5 implementations for ARM Architecture variants

Component ARMv6-M ARMv7-M

ARMv7-A 
without 
Large 
Physical 
Address 
Extension 
and 
ARMv7-R

ARMv7-A 
with Large 
Physical 
Address 
Extension 
and 
ARMv8-A

ADIv5 DAP Required Required Recommended Recommended

DP JTAG-DP Permitted Permitted Permitted Permitted

SW-DP - - Permitted Permitted

SWJ-DP - - Recommended Recommended

SWJ-DP or SW-DP Recommended Recommended - -

Not MINDP Permitted Recommended Recommended Recommended

MEM-AP One per processor Required Required Permitted Permitted

Access to system memory Required Required Permitted Permitted

Support for 8-bit and 16-bit accesses Required Required Required only 
if system 
access is 
supported

Required only 
if system 
access is 
supported

Support for 32-bit accesses Required Required Required Required

Support for 64-bit accesses Permitted Permitted Permitted Required

Support for large physical addresses Not permitted Not permitted Permitted Required if 
system access 
is supported

Support for packed increment transfers Permitted Recommended Recommended Recommended
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Pseudocode Definition

This appendix provides a definition of the pseudocode used in this document, and lists the helper procedures and 
functions used by pseudocode to perform useful architecture-specific jobs. It contains the following sections:
• About ARM pseudocode on page C-228.
• Data types on page C-229.
• Expressions on page C-233.
• Operators and built-in functions on page C-235.
• Statements and program structure on page C-240.
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C.1 About ARM pseudocode
ARM pseudocode provides precise descriptions of some areas of the architecture. The following sections describe 
the ARMv7 pseudocode in detail:
• Data types on page C-229.
• Expressions on page C-233.
• Operators and built-in functions on page C-235.
• Statements and program structure on page C-240.

C.1.1 General limitations of ARM pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, SUBARCHITECTURE_DEFINED, UNDEFINED, and UNPREDICTABLE 
indicate behavior that differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to 
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs. This means that these statements terminate 
pseudocode execution.

For more information, see Simple statements on page C-240.
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C.2 Data types
This section describes:
• General data type rules.
• Bitstrings.
• Integers on page C-230.
• Reals on page C-230.
• Booleans on page C-230.
• Enumerations on page C-230.
• Lists on page C-231.
• Arrays on page C-232.

C.2.1 General data type rules

ARM architecture pseudocode is a strongly-typed language. Every constant and variable is of one of the following 
types:
• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• List.
• Array.

The type of a constant is determined by its syntax. The type of a variable is normally determined by assignment to 
the variable, with the variable being implicitly declared to be of the same type as whatever is assigned to it. For 
example, the assignments x = 1, y = '1', and z = TRUE implicitly declare the variables x, y, and z to have types 
integer, bitstring of length 1, and Boolean, respectively.

Variables can also have their types declared explicitly by preceding the variable name with the name of the type. 
This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

C.2.2 Bitstrings

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted 
length of a bitstring is 1.

The type name for bitstrings of length N is bits(N). A synonym of bits(1) is bit.

Bitstring constants are written as a single quotation mark, followed by the string of 0s and 1s, followed by another 
single quotation mark. For example, the two constants of type bit are '0' and '1'. Spaces can be included in 
bitstrings for clarity.

A special form of bitstring constant with 'x' bits is permitted in bitstring comparisons, see Equality and 
non-equality testing on page C-235.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is, 
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the 
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and 
bitstrings derived from encoding diagrams, this order matches the way they are printed.

Bitstrings are the only concrete data type in pseudocode, in the sense that they correspond directly to the contents 
of, for example, registers, memory locations, and instructions. All of the remaining data types are abstract.
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C.2.3 Integers

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical 
integers rather than what computer languages and architectures commonly call integers. Computer integers are 
represented in pseudocode as bitstrings of the appropriate length, associated with suitable functions to interpret 
those bitstrings as integers.

The type name for integers is integer.

Integer constants are normally written in decimal, such as 0, 15, –1234. They can also be written in C-style 
hexadecimal, such as 0x55 or 0x80000000. Hexadecimal integer constants are treated as positive unless they have a 
preceding minus sign. For example, 0x80000000 is the integer +231. If –231 must be written in hexadecimal, it must be 
written as –0x80000000.

C.2.4 Reals

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer 
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the 
appropriate length, associated with suitable functions to interpret those bitstrings as reals.

The type name for reals is real.

Real constants are written in decimal with a decimal point. This means 0 is an integer constant but 0.0 is a real 
constant.

C.2.5 Booleans

A Boolean is a logical true or false value.

The type name for Booleans is boolean. This is not the same type as bit, which is a length–1 bitstring. Boolean 
constants are TRUE and FALSE.

C.2.6 Enumerations

An enumeration is a defined set of symbolic constants, such as:

enumeration InstrSet {InstrSet_A32, InstrSet_T32, InstrSet_A64};

An enumeration always contains at least one symbolic constant, and a symbolic constant must not be shared 
between enumerations.

Enumerations must be declared explicitly, although a variable of an enumeration type can be declared implicitly by 
assigning one of the symbolic constants to it. By convention, each of the symbolic constants starts with the name of 
the enumeration followed by an underscore. The name of the enumeration is its type name, or type, and the symbolic 
constants are its possible constants.

Note
 A Boolean is a pre-declared enumeration that does not follow the normal naming convention and it has a special 
role in some pseudocode constructs, such as if statements, for example:

enumeration boolean {FALSE, TRUE};
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C.2.7 Lists

A list is an ordered set of other data items, separated by commas and enclosed in parentheses, for example:

(bits(32) shifter_result, bit shifter_carry_out)

A list always contains at least one data item.

Lists are often used as the return type for a function that returns multiple results. For example, this list at the start 
of this section is the return type of the function Shift_C() that performs a standard ARM shift or rotation, when its 
first operand is of type bits(32).

Some specific pseudocode operators use lists surrounded by other forms of bracketing than the (…) parentheses. 
These are:

• Bitstring extraction operators, that use lists of bit numbers or ranges of bit numbers surrounded by angle 
brackets <…>.

• Array indexing, that uses lists of array indexes surrounded by square brackets […].

• Array-like function argument passing, that uses lists of function arguments surrounded by square brackets 
[…].

Each combination of data types in a list is a separate type, with type name given by listing the data types. This means 
that the example list at the start of this section is of type (bits(32), bit). The general principle that types can be 
declared by assignment extends to the types of the individual list items in a list. For example:

(shift_t, shift_n) = ('00', 0);

implicitly declares shift_t, shift_n, and (shift_t, shift_n) to be of types bits(2), integer, and (bits(2), 
integer), respectively.

A list type can also be explicitly named, with explicitly named elements in the list. For example:

type ShiftSpec is (bits(2) shift, integer amount);

After this definition and the declaration:

ShiftSpec abc;

the elements of the resulting list can then be referred to as abc.shift, and abc.amount. This qualified naming of list 
elements is only permitted for variables that have been explicitly declared, not for those that have been declared by 
assignment only.

Explicitly naming a type does not alter what type it is. For example, after the definition of ShiftSpec, ShiftSpec, and 
(bits(2), integer) are two different names for the same type, not the names of two different types. To avoid 
ambiguity in references to list elements, it is an error to declare a list variable multiple times using different names 
of its type or to qualify it with list element names not associated with the name by which it was declared.

An item in a list that is being assigned to can be written as "-" to indicate that the corresponding item of the assigned 
list value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

List constants are written as a list of constants of the appropriate types, for example the ('00', 0) in the earlier 
example.
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C.2.8 Arrays

Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the 
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

// The names of the Banked core registers.

enumeration RName {RName_0usr, RName_1usr, RName_2usr, RName_3usr, RName_4usr, RName_5usr,
                   RName_6usr, RName_7usr, RName_8usr, RName_8fiq, RName_9usr, RName_9fiq,
                   RName_10usr, RName_10fiq, RName_11usr, RName_11fiq, RName_12usr, RName_12fiq,
                   RName_SPusr, RName_SPfiq, RName_SPirq, RName_SPsvc,
                   RName_SPabt, RName_SPund, RName_SPmon, RName_SPhyp,
                   RName_LRusr, RName_LRfiq, RName_LRirq, RName_LRsvc,
                   RName_LRabt, RName_LRund, RName_LRmon,
                   RName_PC};

array bits(8) _Memory[0..0xFFFFFFFF];

Arrays are always explicitly declared, and there is no notation for a constant array. Arrays always contain at least 
one element, because:
• Enumerations always contain at least one symbolic constant.
• Integer ranges always contain at least one integer.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are 
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package 
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register 
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD 
element processing.
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C.3 Expressions
This section describes:
• General expression syntax.
• Operators and functions - polymorphism and prototypes on page C-234.
• Precedence rules on page C-234.

C.3.1 General expression syntax

An expression is one of the following:
• A constant.
• A variable, optionally preceded by a data type name to declare its type.
• The word UNKNOWN preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or 
underscore character.

Each register described in the text is to be regarded as declaring a correspondingly named bitstring variable, and 
that variable has the stated behavior of the register. For example, if a bit of a register is defined as RAZ/WI, then 
the corresponding bit of its variable reads as 0 and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the 
architecture does not specify what value it is and software must not rely on such values. The value produced must 
not constitute a security hole and must not be promoted as providing any useful information to software.

Note
 Some earlier documentation describes this as an UNPREDICTABLE value. UNKNOWN values are similar to the 
definition of UNPREDICTABLE, but do not indicate that the entire architectural state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on 
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the 
circumstances under which it does so. For example, those circumstances might require that one or more of 
the expressions the operator operates is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function 
specifies the circumstances under which it can generate an assignable expression.

Every expression has a data type:

• For a constant, this data type is determined by the syntax of the constant.

• For a variable, there are the following possible sources for the data type:

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or 
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them 
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.

• For a function, the definition of the function determines the data type.
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C.3.2 Operators and functions - polymorphism and prototypes

Operators and functions in pseudocode can be polymorphic, producing different functionality when applied to 
different data types. Each resulting form of an operator or function has a different prototype definition. For example, 
the operator + has forms that act on various combinations of integers, reals, and bitstrings.

One particularly common form of polymorphism is between bitstrings of different lengths. This is represented by 
using bits(N), bits(M), or similar, in the prototype definition.

C.3.3 Precedence rules

The precedence rules for expressions are:

1. Constants, variables, and function invocations are evaluated with higher priority than any operators using 
their results.

2. Expressions on integers follow the normal operator precedence rules of exponentiation before multiply/divide 
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but this is 
not necessary if all permitted precedence orders under the type rules necessarily lead to the same result. For 
example, if i, j, and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k 
> 0 is not.
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C.4 Operators and built-in functions
This section describes:
• Operations on generic types.
• Operations on Booleans.
• Bitstring manipulation.
• Arithmetic on page C-238.

C.4.1 Operations on generic types

The following operations are defined for all types.

Equality and non-equality testing

Any two values x and y of the same type can be tested for equality by the expression x == y and for non-equality by 
the expression x != y. In both cases, the result is of type boolean.

A special form of comparison is defined with a bitstring constant that includes 'x' bits in addition to '0' and '1' 
bits. The bits corresponding to the 'x' bits are ignored in determining the result of the comparison. For example, if 
opcode is a 4-bit bitstring, opcode == '1x0x' is equivalent to opcode<3> == '1' && opcode<1> == '0'.

Note
 This special form is permitted in the implied equality comparisons in when parts of case … of … structures.

Conditional selection

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression 
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

C.4.2 Operations on Booleans

If x is a Boolean, then !x is its logical inverse.

If x and y are Booleans, then x && y is the result of ANDing them together. As in the C language, if x is FALSE, the 
result is determined to be FALSE without evaluating y.

If x and y are Booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result 
is determined to be TRUE without evaluating y.

If x and y are Booleans, then x ^ y is the result of exclusive-ORing them together.

C.4.3 Bitstring manipulation

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:
• The bitstring length function Len(x) returns the length of x as an integer.
• TopBit(x) is the leftmost bit of x. Using bitstring extraction, this means:

TopBit(x)= x<Len(x)–1>.
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Bitstring concatenation and replication

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by 
concatenating x and y in left-to-right order.

If x is a bitstring and n is an integer with n > 0:
• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together
• Zeros(n) = Replicate('0', n), Ones(n) = Replicate('1', n).

Bitstring extraction

The bitstring extraction operator extracts a bitstring from either another bitstring or an integer. Its syntax is 
x<integer_list>, where x is the integer or bitstring being extracted from, and <integer_list> is a list of integers 
enclosed in angle brackets rather than the usual parentheses. The length of the resulting bitstring is equal to the 
number of integers in <integer_list>. In x<integer_list>, each of the integers in <integer_list> must be:
• >= 0

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, let y be the unique integer in the range 0 to 2^(i+1)–1 that is congruent to x modulo 
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.
Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement 
representation of it as a bitstring.

In <integer_list>, the notation i:j with i >= j is shorthand for the integers in order from i down to j, with both 
end values included. For example, instr<31:28> is shorthand for instr<31, 30, 29, 28>.

The expression x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than 
once in <integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram 
for the ABORT register shows its bit<3> as WDERRCLR. In such cases, the syntax ABORT.WDERRCLR is used as a 
more readable synonym for ABORT<3>.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained 
by logically ANDing, ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring count

If x is a bitstring, BitCount(x) produces an integer result equal to the number of bits of x that are ones.
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Testing a bitstring for being all zero or all ones

If x is a bitstring:
• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones.
• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of its bits that are ones. If all of its bits are zeros, 
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of its bits that are ones. If all of its bits are zeros, 
HighestSetBit(x) = –1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N – 1 – HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign 
bit itself, and is in the range 0 to N–1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N–1:1> EOR x<N–2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient 
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i–Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient 
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i–Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that 
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt(x) is the integer whose two’s complement representation is x:

// SInt()
// ======

integer SInt(bits(N) x)
    result = 0;
    for i = 0 to N-1
        if x<i> == '1' then result = result + 2^i;
    if x<N-1> == '1' then result = result - 2^N;
    return result;
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UInt(x) is the integer whose unsigned representation is x:

// UInt()

// ======

integer UInt(bits(N) x)

    result = 0;

    for i = 0 to N-1

        if x<i> == '1' then result = result + 2^i;

    return result;

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument:

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
    result = if unsigned then UInt(x) else SInt(x);
    return result;

C.4.4 Arithmetic

Most pseudocode arithmetic is performed on integer or real values, with operands being obtained by conversions 
from bitstrings and results converted back to bitstrings afterwards. As these data types are the unbounded 
mathematical types, no issues arise about overflow or similar errors.

Unary plus, minus, and absolute value

If x is an integer or real, then +x is x unchanged, –x is x with its sign reversed, and Abs(x) is the absolute value of x. 
All three are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x–y are their sum and difference. Both are of type integer if x and y are both 
of type integer, and real otherwise.

Addition and subtraction are particularly common arithmetic operations in pseudocode, and so it is also convenient 
to have definitions of addition and subtraction acting directly on bitstring operands.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x–y are the least significant 
N bits of the results of converting them to integers and adding or subtracting them. Signed and unsigned conversions 
produce the same result:

x+y = (SInt(x) + SInt(y))<N–1:0>
= (UInt(x) + UInt(y))<N–1:0>

x–y = (SInt(x) – SInt(y))<N–1:0>
= (UInt(x) – UInt(y))<N–1:0>

If x is a bitstring of length N and y is an integer, x+y and x–y are the bitstrings of length N defined by x+y = x + y<N–1:0> 
and x–y = x – y<N–1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x–y are the bitstrings of 
length M defined by x+y = x<M–1:0> + y and x–y = x<M–1:0> – y.

Comparisons

If x and y are integers or reals, then x == y, x != y, x < y, x <= y, x > y, and x >= y are equal, not equal, less than, 
less than or equal, greater than, and greater than or equal comparisons between them, producing Boolean results. In 
the case of == and !=, this extends the generic definition applying to any two values of the same type to also act 
between integers and reals.
C-238 Copyright © 2006, 2009, 2012, 2013 ARM Limited or its affiliates. All rights reserved. ARM IHI 0031C
Non-Confidential ID080813



Appendix C Pseudocode Definition 
C.4 Operators and built-in functions
Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type 
integer, and real otherwise.

Division and modulo

If x and y are integers or reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x – y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Square root

If x is an integer or a real, Sqrt(x) is its square root, and is always of type real.

Rounding and aligning

If x is a real:
• RoundDown(x) produces the largest integer n such that n <= x.
• RoundUp(x) produces the smallest integer n such that n >= x.
• RoundTowardsZero(x) produces RoundDown(x) if x > 0.0, 0 if x == 0.0, and RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y) is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)–1:0> is a bitstring of 
the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y) 
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its 
argument with its n low-order bits forced to zero.

Scaling

If n is an integer, 2^n is the result of raising 2 to the power n and is of type real.

If x and n are of type integer, then:
• x << n = RoundDown(x * 2^n).
• x >> n = RoundDown(x * 2^(–n)).

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. Both 
are of type integer if x and y are both of type integer, and real otherwise.
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C.5 Statements and program structure
The following sections describe the control statements used in the pseudocode:
• Simple statements.
• Compound statements on page C-241.
• Comments on page C-244.

C.5.1 Simple statements

Each of the following simple statements must be terminated with a semicolon, as shown.

Assignments

An assignment statement takes the form:

<assignable_expression> = <expression>;

Procedure calls

A procedure call takes the form:

<procedure_name>(<arguments>);

Return statements

A procedure return takes the form:

return;

and a function return takes the form:

return <expression>;

where <expression> is of the type declared in the function prototype line.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is that the Undefined 
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;
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This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a 
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The 
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {<text>};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION 
DEFINED. An optional <text> field can give more information.

SUBARCHITECTURE_DEFINED

This subsection describes the statement:

SUBARCHITECTURE_DEFINED <text>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is SUBARCHITECTURE 
DEFINED. An optional <text> field can give more information.

C.5.2 Compound statements

Indentation normally indicates the structure in compound statements. The statements contained in structures such 
as if … then … else … or procedure and function definitions are indented more deeply than the statement itself, and 
their end is indicated by returning to the original indentation level or less.

Indentation is normally done by four spaces for each level.

if … then … else …

A multi-line if … then … else … structure takes the form:

if <boolean_expression> then
<statement 1>
<statement 2>
…
<statement n>

elsif <boolean_expression> then
<statement a>
<statement b>
…
<statement z>

else
<statement A>
<statement B>
…
<statement Z>

The block of lines consisting of elsif and its indented statements is optional, and multiple such blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when there are only simple statements in the then part and in the else part, 
if it is present, such as:

if <boolean_expression> then <statement 1>
if <boolean_expression> then <statement 1> else <statement A>
if <boolean_expression> then <statement 1> <statement 2> else <statement A>
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Note
 In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and the 
fact that the else part is optional are differences from the if … then … else … expression.
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repeat … until …

A repeat … until … structure takes the form:

repeat
<statement 1>
<statement 2>
…
<statement n>

until <boolean_expression>;

while … do

A while … do structure takes the form:

while <boolean_expression> do
<statement 1>
<statement 2>
…
<statement n>

for …

A for … structure takes the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>
<statement 2>
…
<statement n>

case … of …

A case … of … structure takes the form:

case <expression> of
when <constant values>

<statement 1>
<statement 2>
…
<statement n>
… more "when" groups …

otherwise
<statement A>
<statement B>
…
<statement Z>

In this structure, <constant values> consists of one or more constant values of the same type as <expression>, 
separated by commas. Abbreviated one line forms of when and otherwise parts can be used when they contain only 
simple statements.

If <expression> has a bitstring type, <constant values> can also include bitstring constants containing 'x' bits. For 
details see Equality and non-equality testing on page C-235.
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Procedure and function definitions

A procedure definition takes the form:

<procedure name>(<argument prototypes>)
<statement 1>
<statement 2>
…
<statement n>

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument 
definition consists of a type name followed by the name of the argument.

Note
 This first prototype line is not terminated by a semicolon. This helps to distinguish it from a procedure call.

A function definition is similar but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>
<statement 2>
…
<statement n>

An array-like function is similar but with square brackets:

<return type> <function name>[<argument prototypes>]
<statement 1>
<statement 2>
…
<statement n>

An array-like function also usually has an assignment prototype:

<function name>[<argument prototypes>] = <value prototypes>
<statement 1>
<statement 2>
…
<statement n>

C.5.3 Comments

Two styles of pseudocode comment exist:
• // starts a comment that is terminated by the end of the line.
• /* starts a comment that is terminated by */.
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This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates that the value associated with a memory access is invalid. 

ADI See ARM Debug Interface (ADI).

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate address/control and data phases, unaligned data transfers using byte strobes, 
burst-based transactions with only start address issued, separate read and write data channels to enable low-cost 
DMA, ability to issue multiple outstanding addresses, out-of-order transaction completion, and easy addition of 
register stages to provide timing closure.The AXI protocol also includes optional extensions to cover signaling for 
low-power operation.

AXI is targeted at high performance, high clock frequency system designs and includes a number of features that 
make it very suitable for high speed sub-micron interconnect.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only supports a subset of the 
functionality provided by the AMBA AXI protocol. The full AMBA AHB protocol specification includes a number 
of features that are not commonly required for master and slave IP developments and ARM recommends only a 
subset of the protocol is usually used. This subset is defined as the AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture (AMBA).

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA is the ARM open standard 
for on-chip buses. It is an on-chip bus specification that details a strategy for the interconnection and management 
of functional blocks that make up a System-on-Chip (SoC). It aids in the development of embedded processors with 
one or more CPUs or signal processors and multiple peripherals. AMBA complements a reusable design 
methodology by defining a common backbone for SoC modules.
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Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or general-purpose peripherals such 
as timers, interrupt controllers, UARTs, and I/O ports. Connection to the main system bus is through a 
system-to-peripheral bus bridge that helps to reduce system power consumption.

AHB See Advanced High-performance Bus (AHB).

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is said to be aligned. 
Aligned words and halfwords have addresses that are divisible by four and two respectively. The terms word-aligned 
and halfword-aligned therefore stipulate addresses that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture (AMBA).

APB See Advanced Peripheral Bus (APB).

Architecture The organization of either or both of hardware and software that characterizes a processor and its attached 
components, and enables devices with similar characteristics to be grouped together when describing their behavior, 
for example, Harvard architecture, instruction set architecture, ARMv6 architecture.

ARM Debug Interface (ADI)
Version 5 of the ARM Debug Interface is defined by this specification. See About the ARM Debug Interface version 
5 (ADIv5) on page 1-18 for a summary of earlier versions of the ARM Debug Interface.

AXI See Advanced eXtensible Interface (AXI).

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are stored at increasing addresses in 
memory.

See also Little-endian and Endianness.

Big-endian memory
Memory in which:

• A byte or halfword at a word-aligned address is the most significant byte or halfword within the word at that 
address.

• A byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also Little-endian memory.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement boundary scan technology using a 
standard JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form 
the chain connected between TDI and TDO, through which test data is shifted. Processors can contain several shift 
registers to enable you to access selected parts of the device.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, there is no requirement to 
supply an address for any of the transfers after the first one. This increases the speed at which the group of transfers 
can occur. Bursts over AMBA are controlled using signals to indicate the length of the burst and how the addresses 
are incremented.

Byte An 8-bit data item.

DAP See Debug Access Port (DAP).

Data Link The layer of an ADIv5 implementation that provides the functional and procedural means to transfer data between 
the external debugger and the Debug Port (DP). ADIv5 defines two Data Link layers, one based on the IEEE 1149.1 
Standard Test Access Port and Boundary Scan Architecture, referred to as JTAG, and one based on the ARM Serial 
Wire Debug protocol interface, referred to as SW-DP.

DATA LINK DEFINED
Means that the behavior is not defined by the base architecture, but must be defined and documented by individual 
Data Link layers of the architecture.

When DATA LINK DEFINED appears in body text, it is always in SMALL CAPITALS.

DBGTAP See Debug Test Access Port (DBGTAP).
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Debug Access Port (DAP)
A TAP block that acts as an AMBA, AHB or AHB-Lite, master for access to a system bus. The DAP is the term 
that encompasses a set of modular blocks that support system wide debug. The DAP is a modular component, 
intended to be extendable to support optional access to multiple systems such as memory mapped AHB and 
CoreSight APB through a single debug interface.

Debugger A system that finds faults in the execution of software.

Debug Test Access Port (DBGTAP)
The collection of four mandatory and one optional terminals that form the input/output and control interface to a 
JTAG boundary scan architecture. The mandatory terminals are DBGTDI, DBGTDO, DBGTMS, and TCK. The 
optional terminal is DBGTRSTn. This signal is mandatory in ARM cores because it is resets the debug logic.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any accesses to the data 
concerned.

DMA See Direct Memory Access (DMA).

Doubleword A 64-bit data item.

Embedded Trace Macrocell (ETM)
A hardware component that, when connected to a processor core, generates instruction and data trace information. 

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are stored in memory. An 
aspect of the system’s memory mapping.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell (ETM).

Halfword A 16-bit data item.

Host A computer that provides data and other services to another computer. Especially, a computer providing debugging 
services to a target being debugged.

IMPLEMENTATION DEFINED
The behavior is not architecturally defined, but is defined and documented by individual implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in SMALL CAPITALS.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard defines a boundary scan 
architecture used for in-circuit testing of integrated circuit devices. It is commonly known by the initials JTAG.

JTAG See JTAG.

JTAG Access Port (JTAG-AP)
An optional component of the DAP that provides JTAG access to on-chip components, operating as a JTAG master 
port to drive JTAG chains throughout a SoC.

JTAG-AP See JTAG Access Port (JTAG-AP).

JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for debug access.

JTAG-DP See JTAG Debug Port (JTAG-DP).

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing addresses in 
memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• A byte or halfword at a word-aligned address is the least significant byte or halfword within the word at that 
address.
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• A byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also Big-endian memory.

Powerup reset A reset asserted when the device is first powered up.

RAO See Read-As-One (RAO).

RAO/WI Read-as-One, Writes Ignored. Hardware must implement the field as Read-as-One, and must ignore writes to the 
field. Software can rely on the field reading as all 1s, and all writes being ignored. This applies to a single bit that 
reads as 1, or to a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-as-Zero, Writes ignored. Hardware must implement the field as Read-as-Zero, and must ignore writes to the 
field. Software can rely on the field reading as all 0s, and all writes being ignored. This applies to a single bit that 
reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ). 

Read-As-One (RAO)
Read-as-One. Hardware must implement the field as Read-as-One. Software can rely on the field reading as all 1s. 
This applies to a single bit that reads as 1, or to a field that reads as all 1s.

Read-As-Zero (RAZ)
Read-as-Zero. Hardware must implement the field as Read-as-Zero. Software can rely on the field reading as all 0s. 
This applies to a single bit that reads as 0, or to a field that reads as all 0s.

RES0 In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to the bit or field must be ignored. 
Software must not rely on the bit reading as 0, or all 0s for a bit field, and except for writing back to a register must 
treat the value as if it is UNKNOWN. When writing to the register, software must write the bit as 0, or the bit field as 
all 0s, if it is writing the field without having previously read the register, or when the register has not been 
initialized. 

If the software that is writing to the register has read the register since the register was last reset, it must preserve 
the value of the field by writing the value that it previously read from the field. Hardware must ignore writes to these 
fields. If a value is written to the field that is neither 0 (or all 0s for a bit field), nor a value previously read for the 
same field in the same register, software must expect an UNPREDICTABLE result. 

A RES0 field that is read-only must read-as-zero, but software must not rely on the field reading as zero, and must 
treat the value as UNKNOWN. A res0 field that is write-only must be written as zero. The effect of writing an other 
value to the field is UNPREDICTABLE.

In some ARM Architecture Reference Manuals, the definition of RES0 is extended to cover cases where a bit or field 
is RES0 in some states, but behaves differently in other states.

When RES0 appears in body text, it is always in SMALL CAPITALS.

RES1 In any implementation, the bit must read as 1, or all 1s for a bit field, and writes to the bit or field must be ignored. 
Software must not rely on the bit reading as 1, or all 1s for a bit field, and except for writing back to a register must 
treat the value as if it is UNKNOWN. When writing to the register, software must write the bit as 1, or the bit field as 
all 1s, if it is writing the field without having previously read the register, or when the register has not been 
initialized. 

If the software that is writing to the register has read the register since the register was last reset, it must preserve 
the value of the field by writing the value that it previously read from the field. Hardware must ignore writes to these 
fields. If a value is written to the field that is neither 1 (or all 1s for a bit field), nor a value previously read for the 
same field in the same register, software must expect an UNPREDICTABLE result. 

Each bit of a RES1 field that is read-only must read-as-one, but software must not rely on the bits reading as one, 
and must treat their values as UNKNOWN. Each bit of a RES1 field that is write-only must be written as one. The effect 
of writing an other value to the field is UNPREDICTABLE. 
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In some ARM Architecture Reference Manuals, the definition of RES1 is extended to cover cases where a bit or field 
is RES1 in some states, but behaves differently in other states.

When RES1 appears in body text, it is always in SMALL CAPITALS.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the implementation, or 
produces Unpredictable results if the contents of the field are not zero. These fields are reserved for use in future 
extensions of the architecture or are implementation specific. All reserved bits not used by the implementation must 
be written as 0 and read as 0.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan technology using a standard 
JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form the chain 
connected between TDI and TDO, through which test data is shifted. Processors can contain several shift registers 
to enable you to access selected parts of the device.

Serial-Wire Debug Port (SW-DP)
An optional external interface for the DAP that provides a low pin count bidirectional serial debug interface.

SW-DP See Serial-Wire Debug Port (SW-DP).

TAP See Test Access Port (TAP).

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output and control interface to a 
JTAG boundary scan architecture. The mandatory terminals are TDI, TDO, TMS, and TCK. The optional terminal 
is TRST*. 

Trace port A port on a device, such as a processor or SoC, to output trace information.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data size is said to be 
unaligned. For example, a word stored at an address that is not divisible by four.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction, 
and implementation to implementation. An UNKNOWN value must not:
• Be a security hazard.
• Be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNP See UNPREDICTABLE.

UNPREDICTABLE
For reads, the data returned when reading from this location is unpredictable. It can have any value. For writes, 
writing to this location causes unpredictable behavior, or an unpredictable change in device configuration. 
UNPREDICTABLE behavior must not present security holes, and must not halt or hang the processor, or any part of 
the system.

In issue A of this document, UNPREDICTABLE also meant an UNKNOWN value.

When UNPREDICTABLE appears in body text, it is always in SMALL CAPITALS.

WI Writes ignored.

W1C Writing a 1 to the bit clears the bit to 0. Writing a 0 to the bit has no effect.

Word A 32-bit data item.
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