LM48310 Boomer® Audio Power Amplifier Series

Ultra-Low EMI, Filterless, 2.6W, Mono, Class D

Audio Power Amplifier with E²S

Check for Samples: LM48310

FEATURES
- Passes FCC Class B Radiated Emissions with 20 inches of cable
- E²S System Reduces EMI while Preserving Audio Quality and Efficiency
- Output Short Circuit Protection with Auto-Recovery
- Stereo Class D Operation
- No Output Filter Required
- Internally Configured Gain (12dB)
- Synchronizable Oscillator for Multi-Channel Operation
- Low Power Shutdown Mode
- Minimum External Components
- "Click and Pop" Suppression
- Micro-Power Shutdown
- Available in Space-Saving WSON Package

DESCRIPTION
The LM48310 is a single supply, high efficiency, mono, 2.6W, filterless switching audio amplifier. The LM48310 features TI's Enhanced Emissions Suppression (E²S) system, that features a unique patent-pending ultra low EMI, spread spectrum, PWM architecture, that significantly reduces RF emissions while preserving audio quality and efficiency. The E²S system improves battery life, reduces external component count, board area consumption, system cost, and simplifying design.

The LM48310 is designed to meet the demands of portable multimedia devices. Operating from a single 5V supply, the device is capable of delivering 2.6W of continuous output power to a 4Ω load with less than 10% THD+N. Flexible power supply requirements allow operation from 2.4V to 5.5V. The LM48310 offers two logic selectable modulation schemes, fixed frequency mode, and an EMI suppressing spread spectrum mode. The E²S system includes an advanced, patent-pending edge rate control (ERC) architecture that further reduce emissions by minimizing the high frequency component of the device output, while maintaining high quality audio reproduction (THD+N = 0.03%) and high efficiency (η = 88%). The LM48310 also features a SYNC_IN input and SYNC_OUT, which allows multiple devices to operate with the same switching frequency, eliminating beat frequencies and any other interference caused by clock intermodulation.

The LM48310 features high efficiency compared to conventional Class AB amplifiers, and other low EMI Class D amplifiers. When driving and 8Ω speaker from a 5V supply, the device operates with 88% efficiency at P_O = 1W. The gain of the LM48310 is internally set to 12dB, further reducing external component count. A low power shutdown mode reduces supply current consumption to 0.01μA.

Advanced output short circuit protection with auto-recovery prevents the device from being damaged during fault conditions. Superior click and pop suppression eliminates audible transients on power-up/down and during shutdown.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
EMI Graph 20in of Speaker Cable

Typical Application

Figure 1. Typical Audio Amplifier Application Circuit
Connection Diagram

![Diagram of LM48310 connection points](image)

Figure 2. WSON Package - Top View

See Package Number DSC0010

PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN+</td>
<td>Non-Inverting Input</td>
</tr>
<tr>
<td>2</td>
<td>IN-</td>
<td>Inverting Input</td>
</tr>
<tr>
<td>3</td>
<td>VDD</td>
<td>Power Supply</td>
</tr>
<tr>
<td>4</td>
<td>SD</td>
<td>Active Low Shutdown Input. Connect to VDD for normal operation.</td>
</tr>
</tbody>
</table>
| 5 | SYNC_IN| Mode Select and External Oscillator Input.
SYNC_IN = VDD: Spread spectrum mode with f_S = 300kHz ± 30%
SYNC_IN = GND: Fixed frequency mode with f_S = 300kHz
SYNC_IN = Clocked: f_S = external clock frequency |
| 6 | SYNC_OUT| Clock Output |
| 7 | OUTB | Inverting Output |
| 8 | GND | Ground |
| 9 | PVDD | H-Bridge Power Supply |
| 10 | OUTA | Non-Inverting Output |

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
ABSOLUTE MAXIMUM RATINGS

Supply Voltage 6.0V
Storage Temperature -65°C to +150°C
Input Voltage -0.3V to VDD +0.3V
Power Dissipation(4) Internally Limited
ESD Rating(5) 2000V
ESD Rating(6) 200V
Junction Temperature 150°C
Thermal Resistance θJC 8.2°C/W
θJA 49.2°C/W

(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

(3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJA, the maximum allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings, whichever is lower.

(5) Human body model, applicable std. JESD22-A114C.

(6) Machine model, applicable std. JESD22-A115-A.

OPERATING RANGES

Temperature Range T_MIN ≤ TA ≤ T_MAX -40°C ≤ TA ≤ +85°C
Supply Voltage 2.4V ≤ VDD ≤ 5.5V

(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

ELECTRICAL CHARACTERISTICS V_DD = PV_DD = 5V

The following specifications apply for A_v = 12dB, (R_L = 8Ω, SYNC_IN = V_DD (Spread Spectrum mode), f = 1kHz, unless otherwise specified. Limits apply for T_A = 25°C.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM48310</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typical(3)</td>
<td>Limit(4)(2)</td>
</tr>
<tr>
<td>VDS</td>
<td>Differential Output Offset Voltage</td>
<td>V_IN = 0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>IDD</td>
<td>Quiescent Power Supply Current</td>
<td>V_IN = 0, R_L = ∞</td>
<td>2.7</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_DD = 3.6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_IN = 0, R_L = ∞</td>
<td>3.2</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_DD = 5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDD</td>
<td>Quiescent Power Supply Current</td>
<td>V_IN = 0, V_DD = 3.6V</td>
<td>2.7</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_IN = 0, V_DD = 5V</td>
<td>3.2</td>
<td>mA</td>
</tr>
<tr>
<td>ISD</td>
<td>Shutdown Current</td>
<td>V_DD = GND</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>VIH</td>
<td>Logic Input High Voltage</td>
<td>SD input, V_DD = 3.6V</td>
<td>1.4</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

(2) R_L is a resistive load in series with two inductors to simulate an actual speaker load. For R_L = 8Ω, the load is 15µH + 8Ω, +15µH. For R_L = 4Ω, the load is 15µH + 4Ω + 15µH.

(3) Typical values represent most likely parametric norms at T_A = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not specified.

(4) Datasheet min/max specification limits are specified by test or statistical analysis.
ELECTRICAL CHARACTERISTICS $V_{DD} = PV_{DD} = 5V^{(1)(2)}$ (continued)

The following specifications apply for $AV = 12dB$, $(RL = 8\Omega$, SYNC_IN = V_{DD} (Spread Spectrum mode), $f = 1kHz$, unless otherwise specified. Limits apply for $TA = 25°C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM48310</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IL}</td>
<td>Logic Input Low Voltage</td>
<td>SD input, $V_{DD} = 3.6V$</td>
<td>Typical $^{(3)}$</td>
<td>Limit $^{(4)(2)}$</td>
</tr>
<tr>
<td>T_{WU}</td>
<td>Wake Up Time</td>
<td></td>
<td>0.4 V (max)</td>
<td></td>
</tr>
<tr>
<td>f_{SW}</td>
<td>Switching Frequency</td>
<td></td>
<td>300 ± 30 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000 kHz</td>
<td></td>
</tr>
<tr>
<td>AV</td>
<td>Gain</td>
<td></td>
<td>12 dB (min)</td>
<td>13 dB (max)</td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input Resistance</td>
<td></td>
<td>20 kΩ (min)</td>
<td>17 kΩ (max)</td>
</tr>
<tr>
<td>P_O</td>
<td>Output Power</td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>$THD+N$</td>
<td>Total Harmonic Distortion + Noise</td>
<td></td>
<td>0.03 % (max)</td>
<td></td>
</tr>
<tr>
<td>$PSRR$</td>
<td>Power Supply Rejection Ratio (Input Referred)</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>$CMRR$</td>
<td>Common Mode Rejection Ratio</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>ξ_{OS}</td>
<td>Output Noise</td>
<td></td>
<td>(\mu V)</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2007–2013, Texas Instruments Incorporated
TYPICAL PERFORMANCE CHARACTERISTICS

THD+N vs Frequency

Figure 3.

- $V_{DD} = 2.5V$, $P_{OUT} = 300mW$, $R_L = 4\, \Omega$

Figure 4.

- $V_{DD} = 3.6V$, $P_{OUT} = 700mW$, $R_L = 4\, \Omega$

Figure 5.

- $V_{DD} = 5.0V$, $P_{OUT} = 1.2W$, $R_L = 4\, \Omega$

Figure 6.

- $V_{DD} = 2.5V$, $P_{OUT} = 150mW$, $R_L = 8\, \Omega$

Figure 7.

- $V_{DD} = 3.6V$, $P_{OUT} = 400mW$, $R_L = 8\, \Omega$

Figure 8.

- $V_{DD} = 5V$, $P_{OUT} = 650mW$, $R_L = 8\, \Omega$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

THD+N vs Output Power
f = 1kHz, R_L = 4Ω

Figure 9.

THD+N vs Output Power
f = 1kHz, R_L = 8Ω

Figure 10.

Efficiency vs Output Power
f = 1kHz, R_L = 4Ω

Figure 11.

Efficiency vs Output Power
f = 1kHz, R_L = 8Ω

Figure 12.

Power Dissipation vs Output Power
f = 1kHz, R_L = 4Ω

Figure 13.

Power Dissipation vs Output Power
f = 1kHz, R_L = 8Ω

Figure 14.
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Output Power vs Supply Voltage

\[f = 1 \text{kHz}, R_L = 4\ \Omega \]

\[f = 1 \text{kHz}, R_L = 8\ \Omega \]

\[\text{THD+N} = 10\% \]

\[\text{THD+N} = 1\% \]

Figure 15.

PSRR vs Frequency

\[V_{DD} = 3.6V, V_{RIPPLE} = 200mV_{P-P}, R_L = 8\ \Omega \]

\[V_{DD} = 5.0V, V_{RIPPLE} = 200mV_{P-P}, R_L = 8\ \Omega \]

Figure 17.

CMRR vs Frequency

\[V_{DD} = 3.6V, V_{RIPPLE} = 1V_{P-P}, R_L = 8\ \Omega \]

\[V_{DD} = 5.0V, V_{RIPPLE} = 1V_{P-P}, R_L = 8\ \Omega \]

Figure 19.
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Fixed Frequency Output Spectrum vs Frequency

$V_{DD} = 5.0V$, $V_{IN} = 1V_{RMS}$, $R_L = 8\Omega$

Spread Spectrum Output Spectrum vs Frequency

$V_{DD} = 5.0V$, $V_{IN} = 1V_{RMS}$, $R_L = 8\Omega$

Wideband Fixed Frequency Output Spectrum vs Frequency

$V_{DD} = 5.0V$, $R_L = 8\Omega$

Wideband Spread Spectrum Output Spectrum vs Frequency

$V_{DD} = 5.0V$, $R_L = 8\Omega$

Supply Current vs Supply Voltage

No Load

Shutdown Supply Current vs Supply Voltage

No Load

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.
GENERAL AMPLIFIER FUNCTION

The LM48310 mono Class D audio power amplifier features a filterless modulation scheme that reduces external component count, conserving board space and reducing system cost. With no signal applied, the outputs (V_{OUTA} and V_{OUTB}) switch between V_{DD} and GND with a 50% duty cycle, in phase, causing the two outputs to cancel. This cancellation results in no net voltage across the speaker, thus there is no current to the load in the idle state.

With the input signal applied, the duty cycle (pulse width) of the LM48310 outputs changes. For increasing output voltage, the duty cycle of V_{OUTA} increases, while the duty cycle of V_{OUTB} decreases. For decreasing output voltages, the converse occurs. The difference between the two pulse widths yields the differential output voltage.

ENHANCED EMISSIONS SUPPRESSION SYSTEM (E^2S)

The LM48310 features 's patent-pending E^2S system that reduces EMI, while maintaining high quality audio reproduction and efficiency. The E^2S system features a synchronizable oscillator with selectable spread spectrum, and advanced edge rate control (ERC). The LM48310 ERC greatly reduces the high frequency components of the output square waves by controlling the output rise and fall times, slowing the transitions to reduce RF emissions, while maximizing THD+N and efficiency performance. The overall result of the E^2S system is a filterless Class D amplifier that passes FCC Class B radiated emissions standards with 20in of twisted pair cable, with excellent 0.03% THD+N and high 88% efficiency.

FIXED FREQUENCY MODE (SYNC_IN = GND)

The LM48310 features two modulations schemes, a fixed frequency mode and a spread spectrum mode. Select the fixed frequency mode by setting SYNC_IN = GND. In fixed frequency mode, the amplifier output switch at a constant 300kHz. In fixed frequency mode, the output spectrum consists of the fundamental and its associated harmonics (see TYPICAL PERFORMANCE CHARACTERISTICS).

SPREAD SPECTRUM MODE (SYNC_IN = V_{DD})

The logic selectable spread spectrum mode eliminates the need for output filters, ferrite beads or chokes. In spread spectrum mode, the switching frequency varies randomly by 30% about a 300kHz center frequency, reducing the wideband spectral contend, improving EMI emissions radiated by the speaker and associated cables and traces. Where a fixed frequency class D exhibits large amounts of spectral energy at multiples of the switching frequency, the spread spectrum architecture of the LM48310 spreads that energy over a larger bandwidth (See TYPICAL PERFORMANCE CHARACTERISTICS). The cycle-to-cycle variation of the switching period does not affect the audio reproduction, efficiency, or PSRR. Set SYNC_IN = V_{DD} for spread spectrum mode.

EXTERNAL CLOCK MODE (SYNC_IN = CLOCK)

Connecting a clock signal to SYNC_IN synchronizes the LM48310 oscillator to an external clock, moving the output spectral components out of a sensitive frequency band, and minimizing audible beat frequencies when multiple LM48310s are used in a single system. The LM48310 accepts an external clock frequency between 200kHz and 1MHz. The LM48310 can be synchronized to a spread spectrum clock, allowing multiple LM48310s to be synchronized in spread spectrum mode (see TYPICAL PERFORMANCE CHARACTERISTICS).

SYNC_OUT

SYNC_OUT is a clock output for synchronizing external devices. The SYNC_OUT signal is identical in frequency and duty cycle of the amplifier’s switching frequency. When the LM48310 is in fixed frequency mode, SYNC_OUT is a fixed, 300kHz clock. When the LM48310 is in spread spectrum mode, SYNC_OUT is an identical spread spectrum clock. When the LM48310 is driven by an external clock, SYNC_OUT is identical to the external clock. If unused, leave SYNC_OUT floating.

Multiple LM48310s can be synchronized to a single clock. In Figure 27, device U1 is the master, providing a spread spectrum clock to the slave device (U2). This configuration synchronizes the switching frequencies of the two devices, eliminating any audible beat frequencies. Because SYNC_OUT has no audio content, there is minimal THD+N degredation or crosstalk between the devices, Figure 28 - Figure 30.
Figure 27. Cascaded LM48310

Figure 28. THD+N vs Output Power

Figure 29. THD+N vs Frequency
DIFFERENTIAL AMPLIFIER EXPLANATION

As logic supplies continue to shrink, system designers are increasingly turning to differential analog signal handling to preserve signal to noise ratios with restricted voltage signs. The LM48310 features a fully differential speaker amplifier. A differential amplifier amplifies the difference between the two input signals. Traditional audio power amplifiers have typically offered only single-ended inputs resulting in a 6dB reduction of SNR relative to differential inputs. The LM48310 also offers the possibility of DC input coupling which eliminates the input coupling capacitors. A major benefit of the fully differential amplifier is the improved common mode rejection ratio (CMRR) over single ended input amplifiers. The increased CMRR of the differential amplifier reduces sensitivity to ground offset related noise injection, especially important in noisy systems.

POWER DISSIPATION AND EFFICIENCY

The major benefit of a Class D amplifier is increased efficiency versus a Class AB. The efficiency of the LM48310 is attributed to the region of operation of the transistors in the output stage. The Class D output stage acts as current steering switches, consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with switching losses due to gate charge.

SHUTDOWN FUNCTION

The LM48310 features a low current shutdown mode. Set SD = GND to disable the amplifier and reduce supply current to 0.01 µA.

Switch SD between GND and VDD for minimum current consumption is shutdown. The LM48310 may be disabled with shutdown voltages in between GND and VDD, the idle current will be greater than the typical 0.1µA value.

The LM48310 shutdown input has an internal pulldown resistor. The purpose of this resistor is to eliminate any unwanted state changes when SD is floating. To minimize shutdown current, SD should be driven to GND or left floating. If SD is not driven to GND or floating, an increase in shutdown supply current will be noticed.

AUDIO AMPLIFIER POWER SUPPLY BYPASSING/FILTERING

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close to the device as possible. Typical applications employ a voltage regulator with 10µF and 0.1µF bypass capacitors that increase supply stability. These capacitors do not eliminate the need for bypassing of the LM48310 supply pins. A 1µF capacitor is recommended.
AUDIO AMPLIFIER INPUT CAPACITOR SELECTION

Input capacitors may be required for some applications, or when the audio source is single-ended. Input capacitors block the DC component of the audio signal, eliminating any conflict between the DC component of the audio source and the bias voltage of the LM48310. The input capacitors create a high-pass filter with the input resistors R_{IN}. The -3dB point of the high pass filter is found using Equation 1 below.

$$f = \frac{1}{2\pi R_{IN} C_{IN}}$$

Where

- R_{IN} is the value of the input resistor given in the Electrical Characteristics table

The input capacitors can also be used to remove low frequency content from the audio signal. Small speakers cannot reproduce, and may even be damaged by low frequencies. High pass filtering the audio signal helps protect the speakers. When the LM48310 is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the high-pass filter point above the power supply noise frequencies, 217Hz in a GSM phone, for example, filters out the noise such that it is not amplified and heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR and PSRR.

AUDIO AMPLIFIER GAIN

The gain of the LM48310 is internally set to 12dB. The gain can be reduced by adding additional input resistance. Figure 31. In this configuration, the gain of the device is given by:

$$A_V = 2 \times \frac{R_F}{(R_{INEXT} + R_{IN})}$$

Where

- R_F is 40kΩ
- R_{IN} is 20kΩ
- R_{INEXT} is the value of the additional external resistor

![Figure 31. Reduced Gain Configuration](image)

SINGLE-ENDED AUDIO AMPLIFIER CONFIGURATION

The LM48310 is compatible with single-ended sources. When configured for single-ended inputs, input capacitors must be used to block and DC component at the input of the device. Figure 32 shows the typical single-ended applications circuit.
PCB LAYOUT GUIDELINES

As output power increases, interconnect resistance (PCB traces and wires) between the amplifier, load and power supply create a voltage drop. The voltage loss due to the traces between the LM48310 and the load results in lower output power and decreased efficiency. Higher trace resistance between the supply and the LM48310 has the same effect as a poorly regulated supply, increasing ripple on the supply line, and reducing peak output power. The effects of residual trace resistance increases as output current increases due to higher output power, decreased load impedance or both. To maintain the highest output voltage swing and corresponding peak output power, the PCB traces that connect the output pins to the load and the supply pins to the power supply should be as wide as possible to minimize trace resistance.

The use of power and ground planes will give the best THD+N performance. In addition to reducing trace resistance, the use of power planes creates parasitic capacitors that help to filter the power supply line.

The inductive nature of the transducer load can also result in overshoot on one of both edges, clamped by the parasitic diodes to GND and V_{DD} in each case. From an EMI standpoint, this is an aggressive waveform that can radiate or conduct to other components in the system and cause interference. It is essential to keep the power and output traces short and well shielded if possible. Use of ground planes and microstrip layout techniques are all useful in preventing unwanted interference.

As the distance from the LM48310 and the speaker increases, the amount of EMI radiation increases due to the output wires or traces acting as antennas become more efficient with length. Ferrite chip inductors places close to the LM48310 outputs may be needed to reduce EMI radiation.

<table>
<thead>
<tr>
<th>Designator</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>10μF ±10% 16V 500Ω Tantalum Capacitor (B Case) AVX TPSB106K016R0500</td>
</tr>
<tr>
<td>C2, C3</td>
<td>2</td>
<td>1μF ±10% 16V X7R Ceramic Capacitor (603) Panasonic ECJ-1VB1C105K</td>
</tr>
<tr>
<td>C4, C5</td>
<td>2</td>
<td>1μF ±10% 16V X7R Ceramic Capacitor (1206) Panasonic ECJ-3YB1C105K</td>
</tr>
<tr>
<td>C6</td>
<td>1</td>
<td>Not Installed Ceramic Capacitor (603)</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>0Ω ±1% resistor (603)</td>
</tr>
<tr>
<td>JP1 — JP2</td>
<td>2</td>
<td>3 Pin Headers</td>
</tr>
<tr>
<td>LM48310SDL</td>
<td>1</td>
<td>LM48310SD (10-pin WSON)</td>
</tr>
</tbody>
</table>
LM48310 Demo Board Schematic

Figure 33. LM48310 DEMO BOARD SCHEMATIC

Demo Boards

Figure 34. Top Silkscreen

Figure 35. Top Layer
Figure 36. Layer 2 (GND)
Figure 37. Layer 3 (V_{DD})
Figure 38. Bottom Layer
Figure 39. Bottom Silkscreen
REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/13/07</td>
<td>Initial release.</td>
</tr>
<tr>
<td>1.01</td>
<td>02/26/08</td>
<td>Fixed few typos (Pin Description table).</td>
</tr>
<tr>
<td>1.02</td>
<td>03/04/08</td>
<td>Text edits under SHUTDOWN FUNCTION (Application Information section).</td>
</tr>
<tr>
<td>1.03</td>
<td>06/24/09</td>
<td>Text edits.</td>
</tr>
</tbody>
</table>

Changes from Revision C (May 2013) to Revision D

- Changed layout of National Data Sheet to TI format ... 16
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Top-Side Markings (4)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM48310SD/NOPB</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSC</td>
<td>10</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>GI8</td>
<td>Samples</td>
</tr>
<tr>
<td>LM48310SDX/NOPB</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSC</td>
<td>4500</td>
<td>4500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>GI8</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM48310SD/NOPB</td>
<td>WSON</td>
<td>DSC</td>
<td>10</td>
<td>1000</td>
<td>178.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM48310SDX/NOPB</td>
<td>WSON</td>
<td>DSC</td>
<td>10</td>
<td>4500</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM48310SD/NOPB</td>
<td>WSON</td>
<td>DSC</td>
<td>10</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM48310SDX/NOPB</td>
<td>WSON</td>
<td>DSC</td>
<td>10</td>
<td>4500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
TEXAS INSTRUMENTS IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Productos

Audio www.ti.com/audio
Amplifiers amplifier.ti.com
Data Converters dataconverter.ti.com
DLP® Products www.dlp.com
DSP dsp.ti.com
Clocks and Timers www.ti.com/clocks
Interface interface.ti.com
Logic logic.ti.com
Power Mgmt power.ti.com
Microcontrollers microcontroller.ti.com
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

Aplicaciones

Automotive and Transportation www.ti.com/automotive
Communications and Telecom www.ti.com/communications
Computers and Peripherals www.ti.com/computers
Consumer Electronics www.ti.com/consumer-apps
Energy and Lighting www.ti.com/energy
Industrial www.ti.com/industrial
Medical www.ti.com/medical
Security www.ti.com/security
Space, Avionics and Defense www.ti.com/space-avionics-defense
Video and Imaging www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated