
Tutorial 1: Software Setup
To use your Teensy or Teensy++ with the Arduino IDE, you will need to
install a few programs.

Install Teensy Loader
The Teensy Loader application downloads programs to your Teensy
board and lets you run them. When you use Arduino, this will be done
automatically, but doing it manually is a simple way to check that your
board works.

Just download the Teensy Loader and the LED Blink samples. No
special installation is needed, just double click on the Teensy Loader to
run it. You should see this window:

If you are using Linux, the 49-teensy.rules file must be copied to
/etc/udev/rules.d/ to give non-root users permission to access the Teensy
USB device.

Download LED Blink
Now you are ready to connect your Teensy. Plugging the Teensy into
your breadboard will protect its pins and give you a solid base that
doesn't move easily when you touch the cable. Then just plug in the
USB cable and the LED should blink slowly.

When the Teensy boots up, it always runs whatever program has been
loaded. All new Teensy boards come with the slow LED blink pre-
loaded.

When you plugged in the cable, nothing happened with the Teensy
Loader. You need to press the pushbutton to put your Teensy into
programming mode. When you press the button, the window Teensy
Loader should show your board.

Now you can load your Teensy with a different program. Use the File-
>Open menu to open blink_fast.hex (available from the page where you
downloaded the Teensy Loader). The bottom line will tell you which file
is open and how much of the flash memory it uses.

Just click the "Program" button to write this new code to your Teensy,
and then click the "Reboot" button to cause it to run. Your Teensy
should be blinking rapidly. You have verified everything works and
you're ready to use it with Arduino.

page 1 of 20

file:///home/paul/teensy/html/49-teensy.rules
file:///home/paul/teensy/html/loader.html

Install Arduino
The next step is to download and install the Arudino Software.

On Windows and Linux, the software is simply a large ZIP file. You will
need to extract it.

On Macintosh, starting with version 0017, the software is a disk image
containing the program. You must copy it to /Applications or your home
directory.

Remember the location where you extracted or copied the Arduino
software, since you will need it shortly.

Install Teensyduino
The Arduino software does not come with support for the Teensy, so you
must run the Teensyduino installer to add the Teensy files to your
Arduino software.

The installer will only ask 1 question, the location of your Arduino
software. The "Next" button will only activate until a directory
containing the Arduino software is selected.

Just continue clicking "Next" until the installation is completed.

If you are using Windows, you should also run this Windows Serial
Installer. If you choose the "USB Serial" option, this will allow the
Windows Found New Hardware Wizard to properly find the driver.

Start Arduino & Choose The Board
Now you are ready to run Arduino. The first step is to select the board
you will be using, from the Tools->Boards menu. This menu will have
entries for Teensy because you ran the Teensyduino installer.

page 2 of 20

file:///home/paul/teensy/html/cdc_acm_class.exe
file:///home/paul/teensy/html/cdc_acm_class.exe
file:///home/paul/teensy/html/td_download.html
http://www.arduino.cc/en/Main/Software

Open LED Blink Example
The Arduino Software comes with many examples. Use the File-
>Examples->Digital->Blink menu to open the LED blink example.

Edit pin number
The Teensy has its LED connected to a different pin, so you will need to
change the pin number. Find the line "int ledPin = 13;" and change the
number.

The Teensy 2.0 board (ATMEGA32U4 chip) has the LED on pin 11.

The Teensy++ 1.0 (AT90USB646 chip) and Teensy 1.0 board
(AT90USB162 chip) have the LED on pin 6.

page 3 of 20

Compile and Download
To compile this code, click the "Verify" button.

A message will appear showing the compiled size. The Teensy Loader
will automatically update with the new file.

Just press the button on the Teensy to program the code.

You can try changing the delay times. Just recompile and download
again. When the Teensy is running a previously loaded program, you
can also use the Upload button.

Now that you have the software set up, you're ready to begin attaching
circuits to the Teensy and writing your own code to control them!

Tutorial 2 will show you how to connect and use a RGB LED.

page 4 of 20

file:///home/paul/teensy/html/tutorial2.html

Tutorial 2: RGB LED
In this tutorial, you will connect a RGB (Red, Green, Blue) LED (Light
Emitting Diode) to your Teensy. Because there are 3 different color
LEDs inside, you can turn on different combinations to simulate many
colors. By using more sophisticated programming, you can achieve very
interesting color effects.

Breadboard Usage
A solderless breadboard gives you a very quick and easy way to build
circuitry. If you have used a breadboard before or are familiar with how
it works, you can skip this section.

Inside the breadboard, groups of holes are connected, so when you plug
wires or components into holes from the same group, an electrical
connection is made.

Most of the holes are in groups of 5. Usually you will connect
components by plugging them into nearby groups of 5, and then add
wires to connect those groups to others to complete your circuit.

Along the top and bottom of your breadboard are long groups which are
usually used for power. Because many connections are made to the 2
power lines, it's very convenient to have them run the entire length of
the breadboard.

How you arrange the wires is largely a matter of personal style. In these

photos, power connections and most components are mounted with legs
bent at 90 degree angles and trimmed short. Usually you don't change
these, so spending a few extra moments to mount these close keeps
them out of your way. Often longer run connections are changed, so
leaving extra length makes experimenting easier.

The electricity does not care if you carefully measured a short wire or
used a (reasonably) long wire. Use whatever style you like!

LED Wiring & Testing
The first step is to add short wires to connect the long power rows to the
power provided by the Teensy, which comes from the USB cable.

page 5 of 20

Next you will need to plug the RGB LED into your breadboard. There
are 4 pins, where pin 1 is the shortest and located on the side with the
flat edge.

You will need to spread the pins slightly so they fit into 4 separate
groups of holes. Pin 2 needs to be connected to ground, so place a short
wire between that hole group and the ground row.

On each of the 3 positive pins, place a 220 ohm resistor (red, red,
brown, gold).

Unlike a light bulb, the diode inside a LED will use as much power as it
can. You must connect a resistor which will serve to limit the power.
Never connect a LED directly to the power supply. Doing so would
destroy the LED.

Now you are ready to test if the LED works. It is always good to test
your connections (if possible) before you attempt to make them work
from code in the Arduino software.

Simply touch a piece of wire between the resistor to the +5 volt power
row. The LED should light!

Repeat this test for the Blue and Red. Remember, do not touch the
power directly to the LED. A resistor must always be connected
between the power and LED.

page 6 of 20

Connect to Teensy Pins
With the LED ready, all that's left is connecting the 3 resistors to 3 pins
on the Teensy. There are many pins to choose from! You should pick 3
pins with the PWM feature. Here are the Teensy pinout diagrams (and
the old Teensy 1.0 diagram).

Using the Teensy 2.0 board, pins 12, 14 and 15 have PWM and are
close. Just plug in 3 wires to connect from the resistors to the pins.

Schematic Diagrams
Electronic circuits are documented using schematic diagrams. Here is a
simple schematic for the connections you just made.

From this schematic, it is easy to see which color is connected to which
pin. Schematics document the connections, without details of how the
actual connections are made.

When you find information about how to connect more types of circuit
to your Teensy, usually they will be expressed in schematic diagrams.

Using Digital Output
To start using the RGB LED, open the blink example, from the File-
>Examples->Digital->Blink menu. Like in the first tutorial, change the
pin number to 12 (or whatever pin has the red LED), compile and load
it. You should see the LED blinking red.

Before continuing, you should quickly repeat for the other 2 pins. If any
wire is not connected, you can much more easily diagnose and fix the
problem by testing each color individually.

The blink example contains 2 sections, a "setup" function that
configures the pin using "pinMode", and a "loop" function which turns
the pin HIGH and LOW. You can easily expand this program by
copying these things 3 times, and change "ledPin" to a name for each
separate pin.

page 7 of 20

file:///home/paul/teensy/html/tutorial.html
file:///home/paul/teensy/html/wiring_pinout.png

You can open these examples and copy-and-paste from your browser into Arduino

int redPin = 12;
int greenPin = 15;
int bluePin = 14;

// The setup() method runs once, when the sketch starts

void setup() {
 // initialize the digitals pin as an outputs
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
}

// the loop() method runs over and over again,

void loop()
{
 digitalWrite(redPin, HIGH);
 delay(500);
 digitalWrite(greenPin, HIGH);
 delay(500);
 digitalWrite(bluePin, HIGH);
 delay(500);
 digitalWrite(redPin, LOW);
 delay(500);
 digitalWrite(greenPin, LOW);
 delay(500);
 digitalWrite(bluePin, LOW);
 delay(500);
}

When you run this program, the LED will be red, then when the green
LED turns on, you will see yellow, because red and green light combine
to form yellow. When the blue pin is turned on, you should see white
(perhaps with some color if the 3 LEDs and resistors are not perfectly
matched). Then when the red turns off, you should see cyan, and when
the green turns off, you should see blue. The pattern will keep repeating,
because "loop" continues to run over and over.

You can experiment with turning on different combinations of colors

and using different delay times. Some interesting patterns are possible,
but to really achieve interesting colors and effects, you need more
control than just turning each color completely on or completely off.

Using Analog (PWM) Output
The PWM pins have the ability to turn on at different intensity, from 0
(fully off) to 255 (fully on). PWM stands of Pulse Width Modulation,
which means the pin is actually pulsing on and off very rapidly to make
this happen, but the net effect is you can control the brightness of each
color.

To control the intensity, just use "analogWrite" in place of
"digitalWrite". The second parameter should be a number between 0 to
255, instead of only "LOW" or "HIGH". Here is one example:

int redPin = 12;
int greenPin = 15;
int bluePin = 14;

void setup() {
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
}

void loop()
{
 analogWrite(redPin, 30);
 delay(500);
 analogWrite(greenPin, 200);
 delay(500);
 analogWrite(bluePin, 40);
 delay(500);
 analogWrite(redPin, 150);
 delay(500);
 analogWrite(greenPin, 0);
 delay(500);
 analogWrite(bluePin, 250);
 delay(500);
}

page 8 of 20

With analogWrite you can create almost any color by changing the
numbers!

Using Variables
Your program already contains 3 variables, "redPin", "greenPin", and
"bluePin". These are assigned a number and never changed, because it
would be senseless to change the number when the wire remains
physically connected to the same pin.

You can create more variables and change them as your program runs.
Here is an example which uses a variable to fade the LED color slowly
from green to red.

int redPin = 12;
int greenPin = 15;
int bluePin = 14;

void setup() {
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
}

int redIntensity = 0;

void loop()
{
 // set all 3 pins to the desired intensity
 analogWrite(redPin, redIntensity);
 analogWrite(greenPin, 255 - redIntensity);
 analogWrite(bluePin, 0);

 // remain at this color, but not for very long
 delay(10);

 // increase the red
 redIntensity = redIntensity + 1;

 // since 255 is the maximum, set it back to 0
 // when it increments beyond 255
 if (redIntensity > 255) {

 redIntensity = 0;
 }
}

In the previous examples, every time "loop" ran, it did the same thing.
But because the action now depends on a variable, each time "loop"
runs it will create a different color. The delay is reduced to a very short
time, so the loop runs 100 times per second. However, the color change
is very small each time, so the LED smoothly fades from green to red.

In the analogWrite to the green pin, the red intensity is subtracted from
255, so when red is off, green is on, and as red increases, green will
decrease. Each time the loop runs, "redIntensity" increases.

Near the end of loop is an "if" condition. This causes the following code
between the curly braces to only run if the condition is true. When
"redIntensity" becomes too large, it is set back to 0. The next time the
loop runs, the LED will instantly go back to green. When "redIntensity"
is not greater than 255, the code is not run, so it is not set back to zero.

You can create as many variables as you like (within the memory
capacity of the chip) and use them in almost any way to achieve
different color effects.

Now that you can create output to the pins, you are ready for Tutorial 3
to receive input signals.

page 9 of 20

file:///home/paul/teensy/html/tutorial3.html

Tutorial 3: Serial Monitor & Input
In this section, you will use the serial monitor to see more information
about what your program is doing. You will also use pins in input mode
to receive signals, which allows your code to respond to real world
events!

Serial Monitor & Serial.print
You can send messages to the Serial Monitor window on your PC or
Mac, which is very helpful to see what your program is doing. Here is a
simple example.

void setup() {
 Serial.begin(38400);
}

void loop()
{
 Serial.println("Hello World");
 delay(1000);
}

Inside the setup function, "Serial.begin(38400)" initializes the
communication. The number 38400 is the baud rate. The Teensy always
uses USB speeds, so this number doesn't matter.

Then you can use Serial.print and Serial.println to send information.
This example just sends "Hello World" every second.

To actually see the messages, click the Serial Monitor button.

The Serial Monitor window should appear, with these messages printing
as your program runs.

Simply printing "Hello World" isn't very interesting, but as you create
programs that do different actions based on real world input, Serial.print
becomes much more useful.

page 10 of 20

Connecting A Pushbutton
Pushbuttons are simple but very useful input. To connect a pushbutton,
you will also need to connect a pullup resistor.

When you press the pushbutton, it connects to ground. When you
release, the resistor provides 5 volts on the pushbutton pin. Without the
resistor, the voltage could remain at zero. It is called a "pullup" because
it serves to pull the voltage back up when you are not pressing the
button.

You can verify the circuit works by connecting a voltmeter. The red lead
connects to the pushbutton pin and the black lead connects to ground.
Here is what you should see on the meter.

Button Not Pressed Button Pressed

It may seem strange to have zero when the button is pressed and have 5
volts when it is released. This is called "active low", because the signal
is low when the condition is happening. Active low signals are very
common practice in electronics, especially for pushbuttons.

When you are confident the pushbutton circuit works, just connect it to
any unused pin. In this photo, it is connected to pin 7.

page 11 of 20

Using digitalRead
To read the pushbutton, you must first use pinMode to configure the pin
to work as an input. Then you can use digitalRead to actually read the
pin. Here is an example.

void setup() {
 Serial.begin(38400);
 pinMode(7, INPUT);
}

void loop()
{
 if (digitalRead(7) == HIGH) {
 Serial.println("Button is not pressed...");
 } else {
 Serial.println("Button pressed!!!");
 }
 delay(250);
}

In this example, the "if" statement is used, together with "else". The
condition after "if" is tested, and either the code in the first or the second
set of curly braces is run.

Using digitalRead(7) will result in either HIGH or LOW. This code
compares digitalRead(7) to HIGH using the "==" comparison. A subtle
but very important detail is the double equal. Using only a single equal
attempts to write or assign a value, which would be silly since you can't
change what digitalRead(7) found. A double equal means to compare 2
numbers, rather than set the first equal to the second.

When you run the program and use the Serial Monitor, you will see
messages that change when you press the pushbutton.

Built In Pullup Resistor
Use of pullup resistors is so common that the AVR processor on the
Teensy board provides a pullup resistor on every pin, built inside the
chip itself.

You can connect a second pushbutton by just wiring one side to ground
and the other side to a pin (pin 8 in this example). One disadvantage of
the built-in pullup is you can not test the pushbutton with the voltmeter
before wiring it to your Teensy.

page 12 of 20

You can activate the pullup resistor by using INPUT_PULLUP with
pinMode in your setup function.

void setup() {
 Serial.begin(38400);
 pinMode(8, INPUT_PULLUP);
}

Usually when using the pullup resistor, you will turn it on with
INPUT_PULLUP and leave it on. However, you can turn it on and off.
When the pin is in input mode, you can turn the pullup resistor on and
off by using digitalWrite. That isn't very intuitive, writing to a pin which
is input mode, but that is how it works. INPUT_PULLUP is a Teensy
extension. On regular Arduino boards, digitalWrite the only way to
access the pullup resistor.

Pushbuttons To Control LED Colors
You can use digitalRead to make your programs respond to pushbutton
input. Here is the Red/Green color fade example from Tutorial 2, but
with another variable added so it has 2 modes, fading from Red/Green
and Red/Blue. The pushbuttons on pins 7 and 8 are checked each time
the loop function runs and the mode is changed if the buttons are
pressed.

(You can open these examples and copy-and-paste from your browser into Arduino)

int redPin = 12;
int greenPin = 15;
int bluePin = 14;

void setup() {
 Serial.begin(38400);
 pinMode(7, INPUT);
 pinMode(8, INPUT_PULLUP);
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);

}

int redIntensity = 0;
int mode = 0;

void loop()
{
 // set all 3 pins to the desired intensity
 analogWrite(redPin, redIntensity);
 if (mode == 0) {
 // in mode zero, fade from red to green
 analogWrite(greenPin, 255 - redIntensity);
 analogWrite(bluePin, 0);
 } else {
 // in mode one, fade from red to blue
 analogWrite(greenPin, 0);
 analogWrite(bluePin, 255 - redIntensity);
 }

 if (digitalRead(7) == LOW) {
 // use mode zero when the first button is pressed
 mode = 0;
 Serial.println("mode 0");
 }
 if (digitalRead(8) == LOW) {
 // use mode one when the first button is pressed
 mode = 1;
 Serial.println("mode 1");
 }

 // remain at this color, but not for very long
 delay(10);

 // increase the red
 redIntensity = redIntensity + 1;

 // since 255 is the maximum, set it back to 0
 // when it increments beyond 255
 if (redIntensity > 255) {
 redIntensity = 0;
 }
}

page 13 of 20

file:///home/paul/teensy/html/tutorial2.html

With the ability to change output and respond to input pins, you can
create very useful projects.

As you create larger programs, use of comments will greatly help you
manage how it functions. If your program does not appear to do what
you want, using Serial.print and the Serial Monitor can help you learn
what it is actually doing.

Can you modify this program to produce other color effects that respond
to the pushbuttons?

The pushbuttons give you simple on/off intput. In Tutorial 4 you will
connect and read analog signals that can vary rather than be limited to
only on and off.

page 14 of 20

file:///home/paul/teensy/html/tutorial4.html

Tutorial 4: Analog Input
Many important types of signals vary continuously, such a temperature.
You can measure such signals with the analog inputs.

Connecting a Potentiometer
A potentiometer (or "pot") is a resistor with a third pin attached to a
mechanical adjustment, so it can slide to any position. You can connect
the outside 2 pins to +5 volt power and ground, and when you turn the
pot, the middle pin will have a voltage that corresponds to the position.

You can check the voltage from the pot by connecting a voltmeter, with
the red lead to the center pin on the pot and the black lead to ground. If
the leads wiggle loose, you can bend a longer U-shaped wire and plug it
into 2 holes, which will be much stronger when you clip a lead onto it.

The Teensy 2.0 has 12 analog input pins (11 are on the edge you can use
with a breadboard), and the Teensy++ has 8. The original Teensy 1.0 did
not have any analog inputs. Here are the analog capable pins.

For this example, connect the pot's voltage to analog pin 0. When used
as analog pins, the Arduino software uses a separate set of zero-based
numbers, so pin 0 (used with pinMode, digitalWrite, analogWrite, and
digitalRead) is different than analog pin 0.

page 15 of 20

Using analogRead
You can test the analog input with this very simple program.

void setup()
{
 Serial.begin(38400);
}

int val;

void loop()
{
 val = analogRead(0);
 Serial.print("analog 0 is: ");
 Serial.println(val);
 delay(250);
}

The "analogRead" function reads the voltage on an analog pin, which is
assigned to a variable. Text and the variable are printed to the Serial
Monitor using Serial.print and Serial.println.

Here is what you should see when slowly turning the knob counter
clockwise.

When the analog input is at 5 volts (or whatever voltage the chip is
actually operating at, if not exactly 5 volts), you should get 1023 and
when it is at 0 volts, you should get 0.

User Controlled LED Color
You can use the pot as user input. Here is an example that uses the pot to
control the LED color.

int redPin = 12;
int greenPin = 15;
int bluePin = 14;

void setup() {
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
}

int redIntensity = 0;

void loop()
{
 // read the pot position
 redIntensity = analogRead(0) / 4;

 // set all 3 pins to the desired intensity
 analogWrite(redPin, redIntensity);
 analogWrite(greenPin, 255 - redIntensity);
 analogWrite(bluePin, 0);

 // remain at this color, but not for very long
 delay(10);
}

This is similar to the LED color fade from Tutorial 2. However, instead
of changing the red intensity automatically, analogRead(0) is used to
measure the pot's position. Because analogRead(0) returns a number
between 0 to 1023, it is divided by 4 so it will be within the 0 to 255
ranges that analogWrite requires.

page 16 of 20

Connecting a Temperature Sensor
A thermistor is a resistor that changes with temperature. You can
connect it together with another resistor that does not change, to create a
voltage.

In this example, the thermistor is a Vishay NTCLE100E3103 which is
10K at 25 degrees Celsius and decreases in resistance as the temperature
increases. At room temperature, the voltage should be slightly above 2.5
volts. As always, you can check the circuit before connecting it to your
Teensy. If you touch the thermistor with your finger, you should see the
voltage change.

When you are confident the thermistor is working, connect it to an
analog input pin. In this example, it is connected to analog input 1.

Simple Temperature Programs
Just like the pot, you can use a simple program to read the analog input
and print the value. As the temperature changes, you should see the
number change in the Serial Monitor.

void setup()
{
 Serial.begin(38400);
}

int val;

void loop()
{
 val = analogRead(1);
 Serial.print("analog 1 is: ");
 Serial.println(val);
 delay(1000);
}

page 17 of 20

Displaying the number from analogRead isn't very meaningful. Here is
an example that converts the number to meaningful temperature
numbers.

void setup()
{
 Serial.begin(38400);
}

float code;
float celsius;
float fahrenheit;

void loop()
{
 code = analogRead(1);
 celsius = 25 + (code - 512) / 11.3;
 fahrenheit = celsius * 1.8 + 32;
 Serial.print("temperature: ");
 Serial.print(celsius);
 Serial.print(" Celsius, ");
 Serial.print(fahrenheit);
 Serial.println(" Fahrenheit");
 delay(1000);
}

In previous examples, variables were created with "int" type, which
limits the variable to holding integers. Since temperatures are real
numbers with digits past the decimal point, you need to use "float" type
variables.

When you run this program, you should see this in the Serial Monitor
window.

More Accurate Temperature Calculation
You might wonder about the equation in the previous example which
converts the code from analogRead into the Celsius temperature. The
truth is, it is only accurate close to room temperature.

This table shows the voltage and code that will be read at various
temperatures. The last column shows the average number of codes per
degree in each range. Near 25 degrees, the change is about 11.3 codes
per degree. The equation above simply computes the difference between
the reading and 25 degrees, then divides by 11.3 codes per degree.
Obviously, for temperatures substantially different from 25 degrees, this
becomes very inaccurate.

Temp, C Ohms Voltage Code Code/Deg

-40 332094 0.15 30

-35 239900 0.20 41 2.21

-30 175200 0.27 55 2.86

-25 129287 0.36 73 3.64

-20 96358 0.47 96 4.55

-15 72500 0.61 124 5.56

-10 55046 0.77 157 6.65

-5 42157 0.96 196 7.77

0 32554 1.17 240 8.85

5 25339 1.41 289 9.82

10 19872 1.67 342 10.60

15 15698 1.95 398 11.12

20 12488 2.22 455 11.36

25 10000 2.50 512 11.32

30 8059 2.77 566 11.00

35 6535 3.02 619 10.44

40 5330 3.26 667 9.73

45 4372 3.48 712 8.90

page 18 of 20

50 3605 3.68 752 8.03

55 2989 3.85 788 7.13

60 2490 4.00 819 6.29

65 2084 4.14 847 5.50

70 1753 4.25 870 4.77

75 1481 4.36 891 4.12

80 1256 4.44 909 3.56

85 1070 4.52 924 3.05

90 915.4 4.58 937 2.62

95 786 4.64 948 2.25

100 677.3 4.68 958 1.93

105 585.7 4.72 966 1.66

110 508.3 4.76 974 1.42

115 442.6 4.79 980 1.22

120 386.6 4.81 985 1.06

125 338.7 4.84 989 0.91

130 297.7 4.86 993 0.79

135 262.4 4.87 997 0.68

140 231.9 4.89 1000 0.59

145 205.5 4.90 1002 0.52

150 182.6 4.91 1005 0.45

The temperature and ohms data for this sensor can be found in the
sensor's datasheet on page 84 (10th page of the PDF file).

In each 5 degree range, the equation is actually different. A simple
approach is to simply use a the correct equation in each range. Here is
one possible way.

void setup()
{
 Serial.begin(38400);
}

int code;
float celsius;
float fahrenheit;

void loop()
{
 code = analogRead(1);
 if (code <= 289) {
 celsius = 5 + (code - 289) / 9.82;
 }
 if (code > 289 && code <= 342) {
 celsius = 10 + (code - 342) / 10.60;
 }
 if (code > 342 && code <= 398) {
 celsius = 15 + (code - 398) / 11.12;
 }
 if (code > 398 && code <= 455) {
 celsius = 20 + (code - 455) / 11.36;
 }
 if (code > 455 && code <= 512) {
 celsius = 25 + (code - 512) / 11.32;
 }
 if (code > 512 && code <= 566) {
 celsius = 30 + (code - 566) / 11.00;
 }
 if (code > 566 && code <= 619) {
 celsius = 35 + (code - 619) / 10.44;
 }
 if (code > 619 && code <= 667) {
 celsius = 40 + (code - 667) / 9.73;
 }
 if (code > 667) {
 celsius = 45 + (code - 712) / 8.90;
 }
 fahrenheit = celsius * 1.8 + 32;
 Serial.print("temperature: ");
 Serial.print(celsius);
 Serial.print(" Celsius, ");
 Serial.print(fahrenheit);
 Serial.println(" Fahrenheit");
 delay(1000);
}

page 19 of 20

file:///home/paul/teensy/html/NTCLE100E3103.pdf

There are many other very sophisticated ways to converting
measurement to accurate temperature measurements. The sensor data
itself is subject to manufacturing tolerance. For very accurate
measurements, you can calibrate the particular sensor you are using by
carefully measuring it at precise temperatures, instead of depending on
the numbers from the table. But for many simple uses, even the simple
equation is often good enough.

Of course, you can use the temperature data in various ways, such as
turning on an LED, or perhaps an air conditioner!

page 20 of 20

